Amt der Tiroler Landesregierung Waldschutz – Luftgüte

April 2008

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

Die Landesregierung für den Vollzug von Landesgesetzen,

vertreten durch das Amt der Tiroler Landesregierung,

Abteilung Waldschutz – Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 08. Juli 2008

Für die Abteilung Waldschutz - Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

⇒	Teletext des ORF	Seite 782, 783
⇒	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

3
4
5
6
7
10
12
15
18
21
23
27
31
33
36
39
42
45
48
50
53
56
59
62
65
67
71
74
/4
76

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäß IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

HMW Halbstundenmittelwert

max HMW / HMW_MAX maximaler Halbstundenmittelwert max 1-MW / MW1_MAX Maximaler Einstundenmittelwert

max 01-M / MW_01_MAX Maximaler Einstundenmittelwert (stündlich gleitend)

max 3-MW Maximaler Dreistundenmittelwert
max 8-MW / MW8 MAX Maximaler Achtstundenmittelwert

max 08-M / MW_08_MAX Maximaler Achtstundenmittelwert (gleitend aus Einstundenmittelwerten)

TMW / max. TMW Tagesmittelwert / Maximaler Tagesmittelwert

MMW Monatsmittelwert

Gl.JMW Gleitender Jahresmittelwert

Keine Berechnung eines Tagesmittelwertes, da weniger

als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen


VDI Verein Deutscher Ingenieure

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (BGBl. 115/97 i.d.g.F.)

n.a. nicht ausgewertet

	BESTÜCKUNGSLISTE													
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	О3	СО							
Höfen – Lärchbichl	880 m	-	-/-	-	-	•	-							
Heiterwang – Ort / B179	993 m	-	•/-	•	•	-	-							
Imst – Imsterau	720 m	-	•/-	•	•	-	ı							
Imst – A12	716 m	-	•/-	•	•	-	-							
Karwendel – West	1730 m	-	-/-	-	-	•	-							
Innsbruck – Andechsstrasse	570 m	-	•/-	•	•	•	-							
Innsbruck – Fallmerayerstrasse	580 m	•	●/●	•	•	-	•							
Innsbruck – Sadrach	670 m	-	-/-	-	-	•	-							
Nordkette	1960 m	-	-/-	•	•	•	-							
Mutters – Gärberbach A13	680 m	-	•/-	•	•	-	-							
Hall in Tirol – Sportplatz	560 m	-	•/-	•	•	-	ı							
Vomp – Raststätte A12	550 m	-	•/-	•	•	-	ı							
Vomp – An der Leiten	550 m	-	•/-	•	•	-	ı							
Zillertaler Alpen	1970 m	-	-/-	-	-	•	-							
Brixlegg – Innweg	520 m	•	•/-	-	-	-	-							
Kramsach – Angerberg	550 m	-	-/-	•	•	•	-							
Kundl – A12	510 m	-	-/-	•	•	-	-							
Wörgl – Stelzhamerstrasse	510 m	-	•/-	•	•	-	1							
Kufstein – Praxmarerstrasse	500 m	•	●/-	•	•	-	1							
Kufstein – Festung	550 m	-	-/-	-	-	•	1							
Lienz – Amlacherkreuzung	670 m	•	•/-	•	•	-	•							
Lienz – Sportzentrum	670 m	-	•/-	•	•	•	-							

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Kurzübersicht über die Einhaltung von Warn-, Grenz- und Zielwerten April 2008

HÖFEN	Bezeichnung der Messstelle	SO2	PM10 2)	NO	NO2 1)	О3	CO
Liarchbich	HÖFEN					ZP	
HEITERWANG			1			M	
Ort / B 179					Ö		
IMST							
Imsterau	IMST				Ö		
IMST							
A12					Ö		
KARWENDEL West West M							
West	KARWENDEL					ΖP	
INNSBRUCK							
Andechsstrasse	INNSBRUCK				Ö		
INNSBRUCK Fallmeray erstrasse INNSBRUCK Sadrach M M M M M M M M M						м	
Fallmeray erstrasse	INNSBRUCK				Ö		
INNSBRUCK Sadrach M							
Sadrach					600	Р	
NORDKETTE			1				
MUTTERS			† †				
Gärberbach A13	NORDRETTE					100	
HALL IN TIROL Sportplatz VOMP IZ Ö M M M M M M M M M					Ö		
Sportplatz VOMP							
VOMP					О		
Raststätte A12	Sportplatz						
An der Leiten ZILLERTALER ALPEN BRIXLEGG Innweg KRAMSACH Angerberg KUNDL A12 WÖRGL Stelzhamerstrasse KUFSTEIN Praxmarerstrasse KUFSTEIN Festung LIENZ Amlacherkreuzung					1000		
An der Leiten ZILLERTALER ALPEN BRIXLEGG Innweg KRAMSACH Angerberg KUNDL A12 WÖRGL Stelzhamerstrasse KUFSTEIN Praxmarerstrasse KUFSTEIN Festung LIENZ Amlacherkreuzung	Raststätte A12				0000		
ZILLERTALER					Ö		
ALPEN	An der Leiten						
BRIXLEGG Innweg			1				
Innweg	ALPEN					M	
KRAMSACH							
Angerberg							
KUNDL IZ Ö A12 M WÖRGL Ö Stelzhamerstrasse Ö KUFSTEIN Ö Praxmarerstrasse Z P KUFSTEIN Z P Festung M LIENZ Ö Amlacherkreuzung Ö					Ö		
A12						M	
Stelzhamerstrasse Ö KUFSTEIN Ö Praxmarerstrasse Z KUFSTEIN Z Festung M LIENZ Ö Amlacherkreuzung O					1000		
Stelzhamerstrasse Ö KUFSTEIN Ö Praxmarerstrasse Z KUFSTEIN Z Festung M LIENZ Ö Amlacherkreuzung O	A12						
KUFSTEIN Praxmarerstrasse KUFSTEIN Festung LIENZ Amlacherkreuzung					Ö		
Praxmarerstrasse KUFSTEIN Festung LIENZ Amlacherkreuzung	Stelzhamerstrasse						
KUFSTEIN Festung LIENZ Amlacherkreuzung					Ö		
Festung M LIENZ Ö Amlacherkreuzung							
LIENZ Ö Amlacherkreuzung	KUFSTEIN					Z P	
LIENZ Amlacherkreuzung	Festung					M	
Amlacherkreuzung	LIENZ				Ö		
						7. P	
Sportzentrum M							

	Grenzwerte und Zielwerte der nachstehenden Beurteilungsgrundlagen eingehalten
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen bei Stickstoff-, Schwefeldioxid und Ozon
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation bei Ozon
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme bei Stickstoffdioxid
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
F	Überschreitung der Grenzwerte der 2. VO gegen forstschädliche Luftverunreinigungen
IZ	Überschreitung von Zielwerten für Stickstoffdioxid oder Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Zielwert zum
IP	Überschreitung des im IG-L genannten Tages ziel wertes von 50µg/m³ für PM10. <i>Der PM10-Tages</i> grenz wert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 30 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen.
Z	Überschreitung des langfristigen Zieles zur menschlichen Gesundheit für Ozon (gilt ab 2010)
IG	Überschreitung von Grenzwerten für Schwefeldioxid, Stickstoffdioxid oder Kohlenmonoxid gem.
!	Überschreitung von Warnwerten für Schwefeldioxid bzw. Stickstoffdioxid gemäss IG-L bzw. der Alarmschwelle gemäss Ozongesetz
1)	Der Jahresmittelwert wird in der Kurzübersicht nicht beurteilt
2)	An den Stationen Imst/Imsterau, Imst/A 12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A 12, Brixlegg/Innweg, Lienz/Am lacherkreuzung und Lienz/Sportzentrum wird P M 10 gravimetrisch gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den April 2008

Messnetz

Das Land Tirol betreibt gemäß Immissionsschutzgesetz Luft (IG-L, BGBl. I 115/1997 i.d.g.F.) und gemäß Ozongesetz (BGBl. 210/1992 i.d.g.F.) sowie der Messkonzeptverordnung zum Immissionsschutzgesetz Luft (BGBl. II 358/98, novelliert mit BGBl. II 263/2004) ein Luftgütemessnetz mit insgesamt 22 Messstationen.

Dieser Bericht enthält Informationen über die gemessenen Luftschadstoffe Kohlenmonoxid (CO), Schwefeldioxid (SO2), Stickoxide (NO und NO2) und Ozon (O3) sowie für Feinstaub (PM 10 und PM 2,5) über die Verfügbarkeit der Messdaten, und bezieht die Ergebnisse auf anerkannte wirkungsbezogene Immissionsgrenzkonzentrationen laut ÖAW sowie auf gesetzliche Grenz- und Zielwerte österreichischer Gesetze (IG-L, Ozongesetz).

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

Der April 2008 brachte einen steten Wechsel aus leicht zu kalten und leicht zu warmen Witterungsphasen. Im Großteil des Landes entsprachen somit die Monatsmitteltemperaturen dem langjährigen Schnitt, nur im Unterinntal gab es ein Plus von knapp einem Grad. Die tiefste Temperatur gab es am 8.4. in Seefeld mit -14,3 Grad, die höchste in Kufstein am 28.4. mit 24,3 Grad. In der Landeshauptstadt gab es nur einen anstatt vier Frosttage.

Feucht ging es her. Im Außerfern und im Unterland fiel teilweise das Doppelte der normalen Niederschlagsmenge, Ursache war die Häufigkeit von Nordwestwetterlagen. Im Oberland betrug das Niederschlagsplus meist zwischen 30 und 60%. In Osttirol entsprachen die Regenmengen hingegen dem Soll, Lienz war die einzige Station Tirols mit zu wenig Niederschlag. 16 bis 22 Regentage unterstreichen die deutlich übernormal feuchte Witterung.

In der ersten Dekade schneite es kurz sogar noch einmal bis ins Inntal herunter, in höheren Tallagen gab es noch einmal ansehnliche Neuschneemengen, in Seefeld etwa knapp einen Meter. Ab dem 18.4. war es aber auch dort aper.

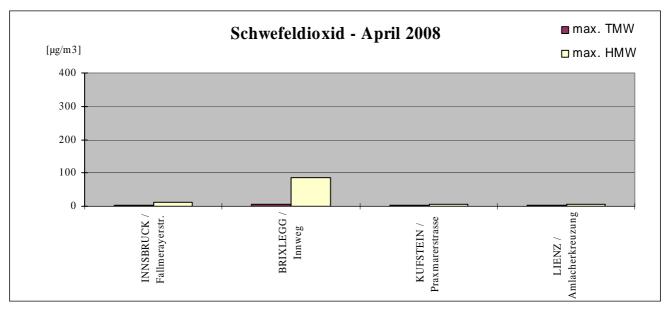
Der Föhn wehte öfter als gewöhnlich, in Innsbruck wurde an 9 Tagen die 60 km/h-Schranke überschritten (normal: 6 Tage).

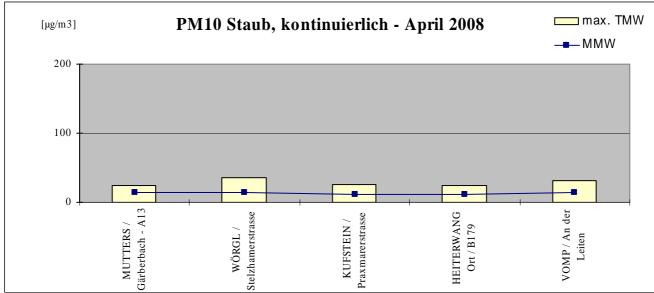
Die Sonne schien hingegen weniger oft als zu erwarten war, in Innsbruck kamen 137 Sonnenstunden und somit um etwa 30 Stunden zu wenig zusammen.

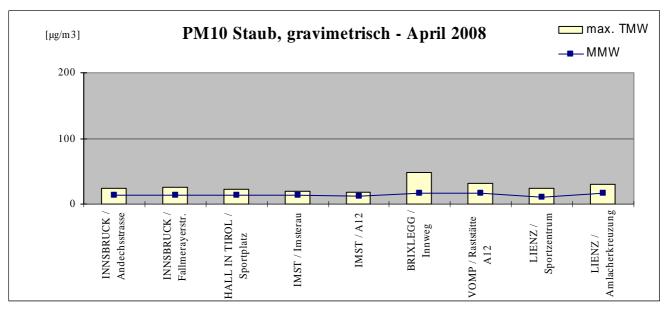
Luftschadstoffübersicht

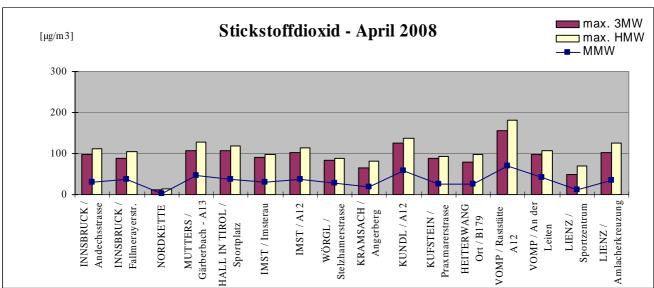
Das wechselhafte Aprilwetter wirkte sich mit häufigen Luftmassenwechseln günstig auf die Luftqualität aus. Die günstigen lufthygienischen Bedingungen wurden bei der Luftschadstoffkomponente **PM10** am deutlichsten offensichtlich, wo lediglich Monatsmittelwerte zwischen 11 und $16\,\mu\text{g/m}^3$ gemessen wurden. Überdies wurde auch keine Grenzwertüberschreitung des Grenzwertes laut IG-L (Immissionsschutzgesetz-Luft) von $50\,\mu\text{g/m}^3$ als Tagesmittelwert festgestellt.

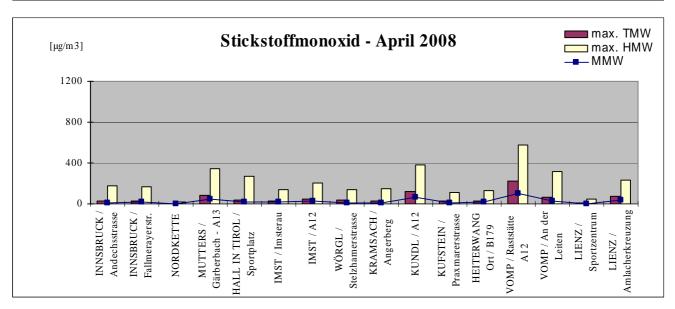
Ebenfalls sind die **Stickstoffmonoxid**konzentrationen im Berichtsmonat als gering einzustufen. So wurden an der höchstbelasteten Messstelle VOMP/Raststätte A 12 die Grenzwerte laut VDI-Richtlinie (500 μ g/m³ als Tagesmittelwert beziehungsweise 1000 μ g/m³ als Halbstundenmittelwert) mit 578 μ g/m³ als maximalen Halbstundenmittelwert und 223 μ g/m³ als maximalen Tagesmittelwert bei weitem nicht erreicht.

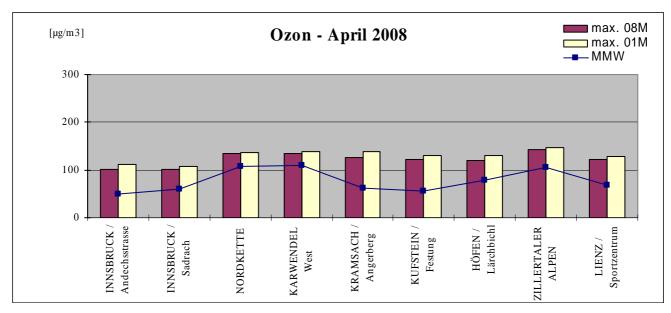

Bei **Stickstoffdioxid** (=NO2) gab es an den beiden autobahnnahen Messstellen im Unterinntal VOMP/Raststätte A 12 und KUNDL/ A 12 Überschreitungen des Zielwertes laut IG-L beziehungsweise der wirkungsbezogenen Immissionsgrenzkonzentration laut ÖAW (Österreichische Akademie der Wissenschaften) von $80~\mu g/m^3$ als Tagesmittelwert. Das für die beiden Messstellen NORDKETTE und KRAMSACH/Angerberg relevante Luftqualitätskriterium für NO2 zum Schutz der Vegetation laut ÖAW wurde an der Messstelle KRAMSACH/Angerberg nicht eingehalten. Überschreitungen des Kurzzeitgrenzwertes von $200~\mu g/m^3$ als Halbstundenmittelwert laut IG-L gab es jedoch keine.

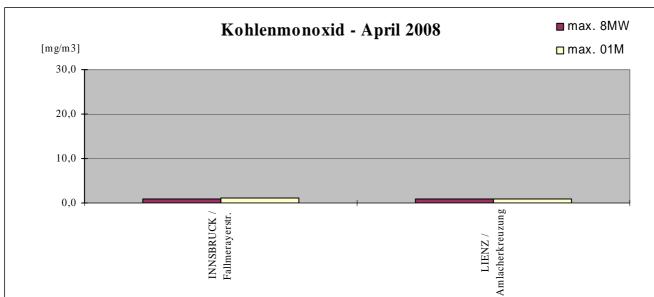

Zahlreiche Zielwertüberschreitungen waren bei **Ozon** bei den 3 Bergstationen zu verzeichnen. Zusätzlich wurde der Zielwert von $120\,\mu\text{g/m}^3$ als Achtstundenmittelwert laut Ozongesetz an den Talstationen HÖFEN/Lärchbichl, KRAMSACH/Angerberg, KUFSTEIN/Festung und LIENZ/Sportzentrum jeweils an einem Tag überschritten. Die Kriterien laut ÖAW zum Schutz des Menschen und der Vegetation wurde an allen 9 Messstellen nicht eingehalten.


Bei den 4 **Schwefeldioxid**messstellen lag der Monatsmittelwert einheitlich bei $2 \mu g/m^3$. Einzelne höhere Kurzzeitspitzen wurden nur an der Messstelle BRIXLEGG/Innweg verzeichnet. Diese blieben aber deutlich unter den Grenzwerten laut IG-L beziehungsweise der zweiten Verordnung gegen forstschädliche Luftverunreinigungen.

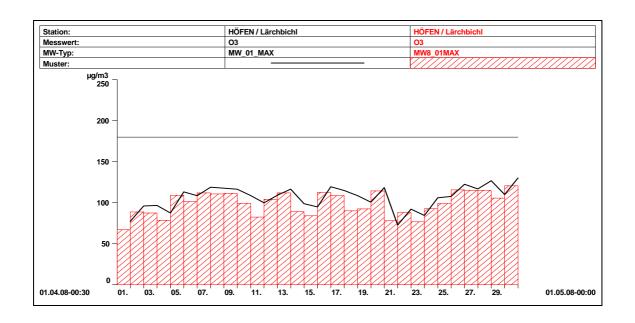

Ebenso wurde der festgesetzte Grenzwert für **Kohlenmonoxid** deutlich eingehalten. Der maximale Achtstundenmittelwert lag mit 0,8 mg/m³ an beiden Messstellen deutlich unter dem Grenzwert von 10 mg/m³ laut IG-L.


Stationsvergleich





Messstelle: HÖFEN / Lärchbichl


	SC	02	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu \text{g}/\text{m}^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									67	67	77	77	79			
02.									89	89	96	98	99			
03.									87	87	97	97	100			
04.									78	79	87	87	88			
05.									109	109	113	113	114			
So 06.									101	101	109	109	109			
07.									112	112	119	119	119			
08.									111	111	118	118	118			
09.									111	112	116	116	117			
10.									99	99	109	109	109			
11.									83	83	100	100	101			
12.									104	104	109	109	110			
So 13.									112	112	116	117	117			
14.									89	89	99	100	101			
15.									84	84	95	95	97			
16.									113	113	119	120	120			
17.									109	109	115	117	117			
18.									90	90	109	109	111			
19.									92	93	101	101	101			
So 20.									114	115	118	118	119			
21.									78	80	73	73	73			
22.									88	87	92	92	93			
23.									77	77	84	84	85			
24.									93	93	106	106	113			
25.									99	99	108	109	113			
26.									116	116	122	122	123			
So 27.									115	115	117	118	118			
28.									115	115	127	127	127			
29.									106	104	110	110	110			
30.									121	121	130	130	131			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						131	
Max.01-M						130	
Max.3-MW							
Max.08-M							
Max.8-MW						121	
Max.TMW						101	
97,5% Perz.							
MMW						78	
Gl.JMW							

Messstelle: HÖFEN / Lärchbichl

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONOEGETZ AL 1 II -					0	<u> </u>
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					1	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					15	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

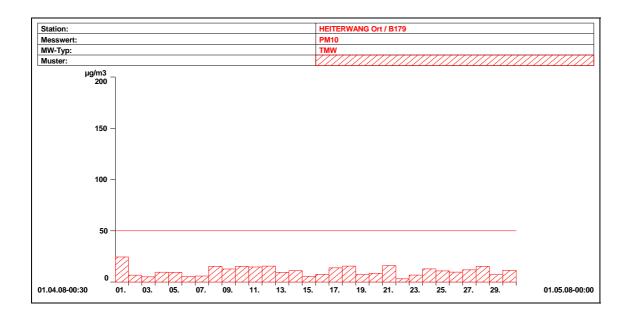
 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

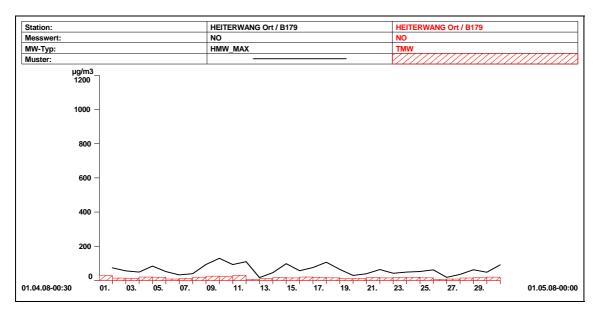
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

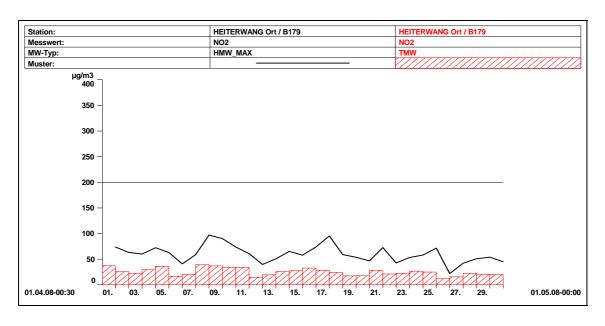
Messstelle: HEITERWANG Ort / B179

	SC)2	PM10	PM10	NO		NO2			_	03				со	
			kont.	grav.												_
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		μg/m³	ı		I	μg/m³	1			mg/m³	ı
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			24		74	37	64	74								
02.			7		56	26	59	63								
03.			5		49	22	55	60								
04.			10		84	29	70	72								
05.			10		52	36	61	63								
So 06.			5	_	32	16	36	41	_							
07.			6		39	20	51	59								
08.			15		93	39	87	97								
09.			13		129	37	80	90								
10.			15 15		93	34 34	71 57	74 61								
11. 12.			16		110 16	34 15	33	40								
So 13.			10		46	19	49	51								
14.			11		98	26	57	65								
15.			6		57	28	52	58								
16.			8		75	33	66	74								
17.			14		106	28	78	95								
18.			16		65	24	54	59								
19.			7		29	17	43	54								
So 20.			8		39	18	41	47								
21.			16		64	28	61	73								
22.			3		42	21	40	42								
23.			7		49	22	43	53								
24.			13		52	27	45	58								
25.			11		62	25	65	72								
26.			10		18	12	20	22								
So 27.			12		35	15	37	42								
28.			15		62	22	46	51								
29.			7		48	21	41	54								
30.			11		91	20	40	45								

	SO2	PM10	PM10	NO	NO2	03	co
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage		30		30	30		
Verfügbarkeit		100%		98%	98%		
Max.HMW				129	97		
Max.01-M					87		
Max.3-MW					80		
Max.08-M							
Max.8-MW							
Max.TMW		24		29	39		
97,5% Perz.							
MMW		11	-	16	25		
Gl.JMW					28		


Messstelle: HEITERWANG Ort / B179


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				3		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

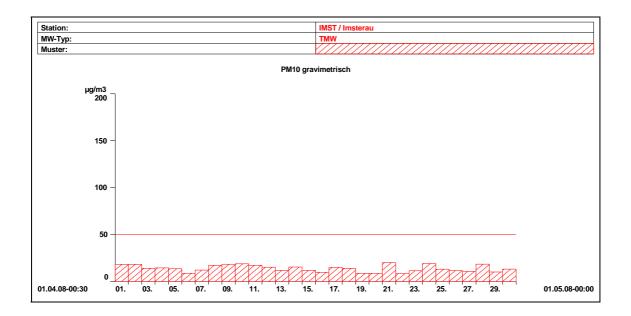
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

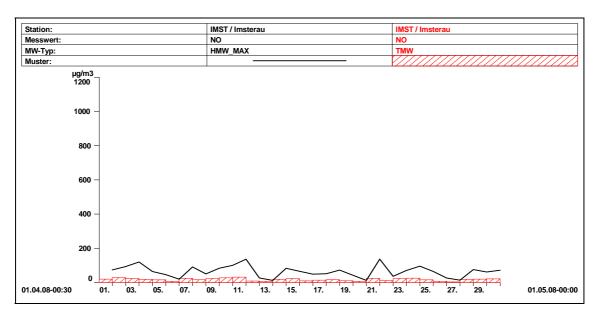
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: APRIL 2008 Messstelle: IMST / Imsterau

	SO)2	PM10	PM10	NO	_	NO2		03				СО	_		
			kont.	grav.		_										
	μg		μg/m³	μg/m³	$\mu g/m^3$		μg/m³			l	μg/m³	I			mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				18	73	34	75	78								
02.				18	93	52	91	98								
03.				14	120	40	93	96								
04.				14	64	36	57	59								
05.				13	46	29	57	59								
So 06.				9	19	20	33	39			_					
07.				12	90	40	82	88								
08.				17	50	38	67	73								
09.				18	83	37	57	62								
10.				19	100	36	56	61								
11.				17	136	36	69	76								
12.				15	26	25	42	43								
So 13.				12	12	19	44	45								
14.				15	83	31	62	63								
15.				12	65	35	69	73								
16.				10	48	24	60	71								
17.				15	51	33	61	75								
18.				14	72	32	54	64								
19.				9	42	26	55	60								
So 20.				9	12	17	38	40								
21.				20	136	36	73	83								
22.				8	36	26	56	62								
23.				11	70	28	55	57								
24.				19	95	35	80	89								
25.				13	64	27	55	59								
26.				12	26	20	34	40								
So 27.				11	13	15	38	50								
28.				18	75	31	80	81								
29.				10	61	34	74	75								
30.				13	71	31	66	70								

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				136	98		
Max.01-M					93		
Max.3-MW					90		
Max.08-M							
Max.8-MW							
Max.TMW			20	31	52		
97,5% Perz.							
MMW	·		14	17	31		
Gl.JMW					36		


Zeitraum: **APRIL 2008** Messstelle: IMST / Imsterau


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				6		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

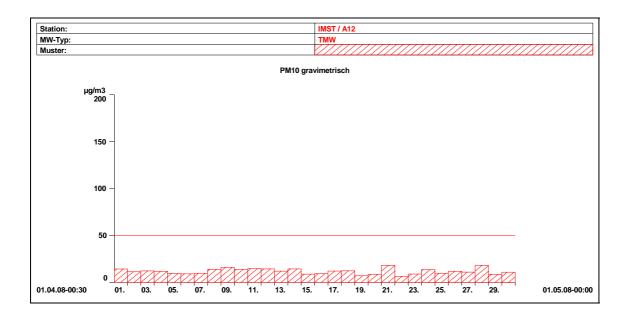
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

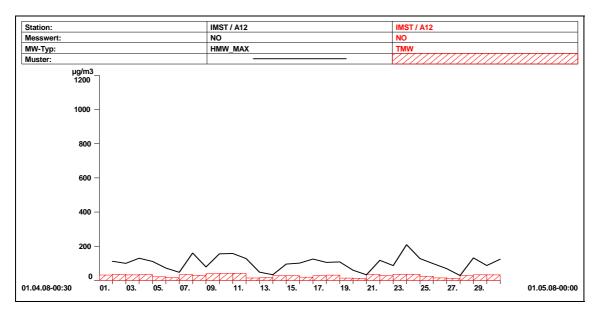
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

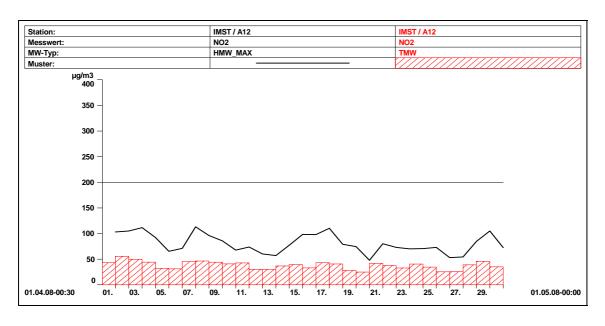
Zeitraum: APRIL 2008 Messstelle: IMST / A12

	SC	02	PM10	PM10	NO		NO2		_	_	О3			_	СО	_
			kont.	grav.		-										_
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				14	112	43	92	103								
02.				11	100	56	102	105								
03.				12	130	50	109	112								
04.				12	111	44	88	92								
05.				10	72	32	54	65								
So 06.				9	48	31	65	71								
07.				10	160	45	107	113								
08.				14	79	46	84	96								
09.				16	156	44	79	86								
10.				14	158	41	65	68								
11.				15 14	128	43 30	66 60	74 60								
12. So 13.				12	48 33	30	53	57								
14.				14	96	37	67	77								
15.				9	101	39	92	98								
16.				9	125	33	84	98								
17.				12	106	43	105	110								
18.				12	108	41	66	79								
19.				7	59	28	69	75								
So 20.				9	33	25	47	48								
21.				18	118	42	79	80								
22.				7	87	38	69	73								
23.				9	209	33	68	70								
24.				14	128	41	69	71								
25.				10	98	35	66	73								
26.				12	69	25	49	53								
So 27.				11	29	26	50	54								
28.				18	132	39	78	85								
29.				9	87	46	100	105								
30.				11	124	35	70	73								

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				209	113		
Max.01-M					109		
Max.3-MW					103		
Max.08-M							
Max.8-MW							
Max.TMW			18	42	56		
97,5% Perz.							
MMW			12	27	38		
Gl.JMW					56		


Zeitraum: **APRIL 2008** Messstelle: IMST / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				17		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

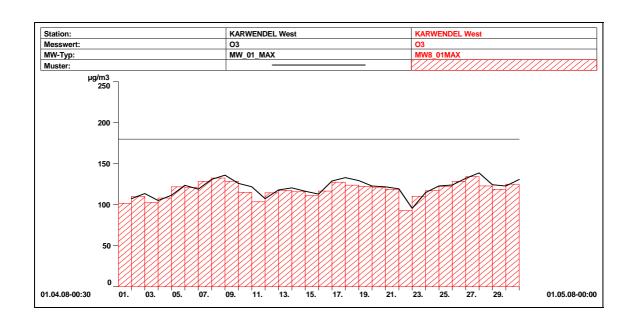
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KARWENDEL West

	SC)2	PM10	PM10	NO	_	NO2		03		СО					
			kont.	grav.		_			_							
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	1
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.									102	102	107	107	108			
02.									110	110	114	114	114			
03.									103	103	105	105	106			
04.									108	108	112	112	112			
05.									122	122	124	124	124			
So 06.									121	121	119	119	119			
07.									128	128	131	131	132			
08.									133	132	136	137	138			
09.									129	129	126	126	126			
10.									115	115	122	122	122			
11.									104	105	107	108	108			
12.									115	115	118	119	119			
So 13.									118	118	121	121	121			
14.									116	116	116	116	117			
15.									111	111	113	116	116			
16.									117	117	129	129	129			
17.									127	127	133	133	134			
18.									124	125	129	129	131			
19.									122	123	123	125	124			
So 20.									121	121	122	122	122			
21.									119	119	119	119	121			
22.									93	93	96	96	96			
23.									110	110	115	115	115			
24.									117	117	123	124	124			
25.									122	122	124	125	125			
26.									128	129	132	132	133			
So 27.									134	134	139	139	139			
28.									123	123	124	124	125			
29.									119	118	123	123	124			
30.									125	125	131	132	132			

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						139	
Max.01-M						139	
Max.3-MW							
Max.08-M							
Max.8-MW						134	
Max.TMW						130	
97,5% Perz.							
MMW						109	
GLJMW							


Messstelle: KARWENDEL West

SO2	PM10 1)	NO	NO2	03	CO
				0	
				0	
				14	

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)											
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30							
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					29							
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert												

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: INNSBRUCK / Andechsstrasse

	SC)2	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg	m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		\mug/m^3				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				24	22	35	66	69	61	61	71	71	73			
02.				23	86	52	70	75	37	38	59	59	61			
03.				14	41	44	65	70	47	48	53	56	57			
04.				15	36	32	64	67	61	61	73	74	75			
05.				15	34	29	48	51	84	84	92	95	97			
So 06.				16	15	29	40	42	56	59	61	61	63			
07.				12	112	46	106	112	68	68	79	80	83			
08.				23	64	56	84	84	56	56	77	84	90			
09.				16	178	31	72	75	85	85	89	89	90			
10.				7	43	20	52	54	80	80	83	83	83			
11.				8	45	24	58	61	75	75	80	80	80			
12.				22	21	25	49	52	71	71	77	77	79			
So 13.				18	20	30	70	71	88	88	95	95	96			
14.				11	61	28	63	65	79	79	87	87	88			
15.				8	13	21	32	35	69	69	73	74	77			
16.				14	39	29	75	78	82	82	87	87	87			
17.				12	18	20	47	49	97	97	99	99	99			
18.				9	32	20	58	61	96	96	102	102	103			
19.				9	26	22	42	47	91	91	96	99	98			
So 20.				8	10	14	29	35	91	91	94	94	95			
21.				19	43	44	74	75	90	90	93	93	93			
22.				8	54	37	76	83	50	49	58	59	59			
23.				10	38	29	54	61	57	58	70	72	73			
24.				19	72	33	50	50	58	58	64	64	67			
25.				12	63	35	67	72	71	72	82	82	85			
26.				12	14	24	58	70	91	92	102	102	104			
So 27.				13	12	28	69	70	102	102	111	111	111			
28.				16	59	30	70	73	96	96	102	102	102			
29.				9	24	31	74	79	94	93	82	85	85			
30.				10	95	22	38	41	101	101	103	103	104			

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	μg/m³	mg/m³				
Anz. Messtage			30	30	30	30	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				178	112	111	
Max.01-M					106	111	
Max.3-MW					97		
Max.08-M							
Max.8-MW						102	
Max.TMW			24	25	56	79	
97,5% Perz.							
MMW			14	10	31	50	
Gl.JMW	•				40		

0

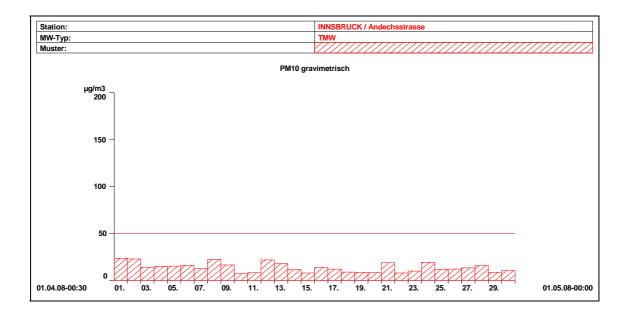
Zeitraum: APRIL 2008

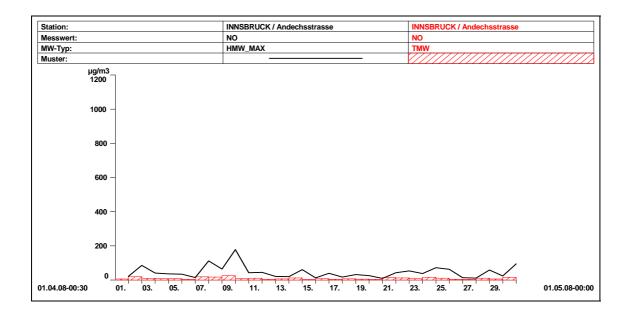
Messstelle: INNSBRUCK / Andechsstrasse

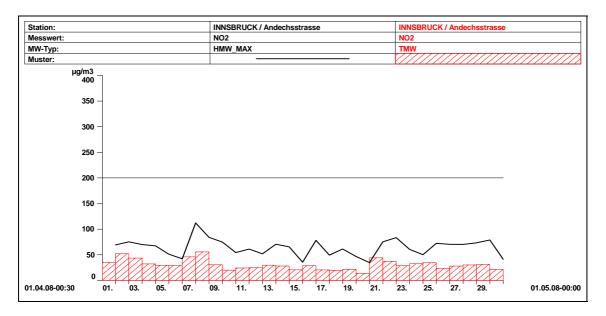
Anzahl der Tage mit Grenzwertüberschreitungen

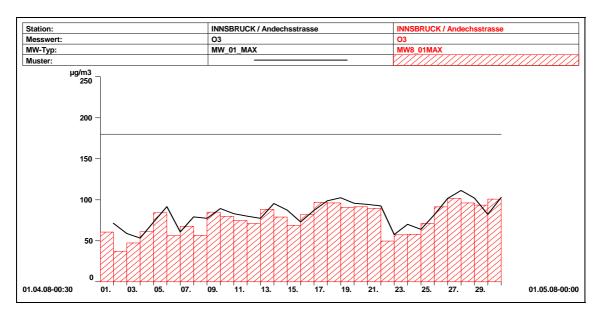
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				6	23	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1	2	

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: INNSBRUCK / Fallmerayerstrasse

	SC)2	PM10	PM25	NO	_	NO2		_		О3	_			СО	_
			grav.	grav.					_							
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$	I		l	μg/m³		I		mg/m³	1
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	4	6	25	18	91	47	91	97						0.7	0.8	0.9
02.	4	8	21	16	129	61	87	91						0.8	0.9	0.9
03.	3	5	14	12	73	54	81	94						0.8	0.9	1.0
04.	4	9	17	13	92	49	87	95						0.8	1.1	1.1
05.	3	6	15	11	45	39	57	66						0.7	0.8	0.8
So 06.	3	6	12	12	32	36	55	58						0.7	1.0	1.2
07.	3	5	10	8	69	47	99	105						0.7	0.8	0.9
08.	4	7	21	13	86	59	91	96						0.3	0.4	0.5
09.	4	13	16	10	169	39	81	93						0.3	0.5	0.7
10.	2	4	10	6	41	27	53	54						0.1	0.2	0.2
11.	2	4	9	5	53	28	64	72						0.1	0.2	0.3
12.	2	3	20	17	16	31	49	51						0.2	0.2	0.3
So 13.	2	5	15	11	22	29	51	54						0.2	0.5	0.8
14.	2	4	11	8	62	35	67	67						0.2	0.3	0.4
15.	1	3	10	7	72	38	70	87						0.2	0.5	0.7
16.	1	2	16	12	57	40	65	76						0.4	0.5	0.7
17.	1	3	15	10	46	31	70	71						0.4	0.5	0.6
18.	1	3	9	6	38	26	56	59						0.3	0.4	0.5
19.	1	2	8	5	22	27	53	54						0.3	0.3	0.4
So 20.	1	4	8	5	16	19	38	40						0.3	0.3	0.4
21.	2	4	17	11	64	46	90	104						0.4	0.4	0.6
22.	2	3	8	6	76	43	87	93						0.3	0.4	0.4
23.	2	3 7	13	8	41	38	57 61	67						0.3	0.4	0.4
24.	3	-	21	13	121	41	_	84						0.4	0.6	0.6
25.	2	4	14	10	77	45	70	78 50						0.3	0.5	0.5
26.	2	3	12	9	25	31	55	58							0.4	0.4
So 27.	2	4	11	8	16	25	47	51						0.3	0.3	0.4
28.	2	4	16	11	59	36	68	70						0.3	0.4	0.5
29.	2	2 7	11	7	60	41	101	102						0.2	0.5	0.7
30.	2	7	12	7	66	30	51	53]	J			0.3	0.4	0.5

	SO2	PM10	PM25	NO	NO2	03	СО
		grav.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	30	30	30	30	30		
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	13			169	105		
Max.01-M					101		1.1
Max.3-MW	9				89		
Max.08-M							
Max.8-MW							0.8
Max.TMW	4	25	18	29	61		
97,5% Perz.	6						
MMW	2	14	10	16	38		0.3
Gl.JMW					46		

Messstelle: INNSBRUCK / Fallmerayerstrasse

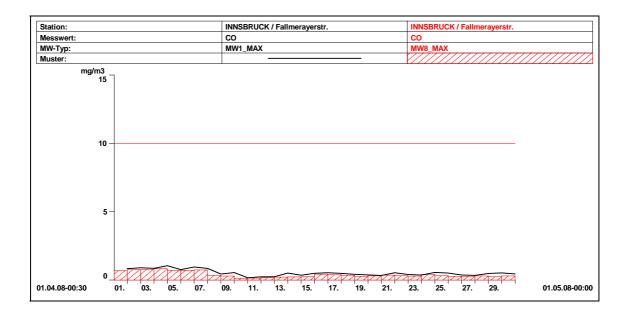
Anzahl der Tage mit Grenzwertüberschreitungen

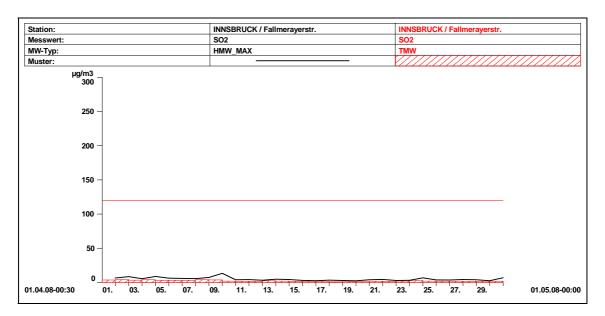
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	0		0		0
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				13		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		

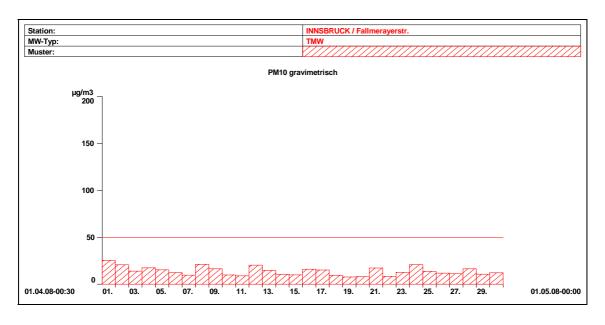
 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

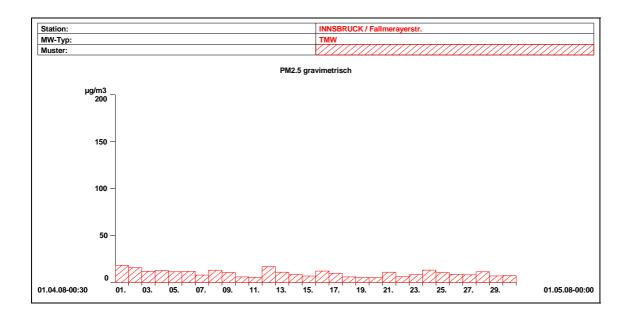
ÖAW: SO2-Kriterium für Siedlungsgebiete

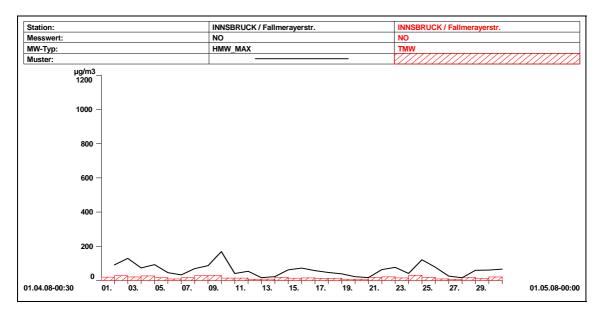
VDI-RL 2310: NO-Grenzwert

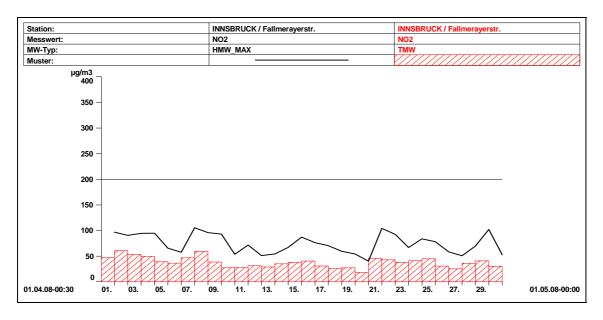

0


0


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

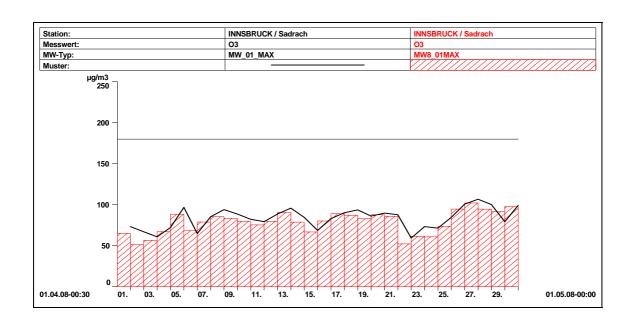

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Messstelle: INNSBRUCK / Sadrach

	SO2		PM10	PM10	NO	_	NO2		_	_	03			_	СО	
		, ,	kont.	grav.	/ 2		/ 2				/ 2				/ 2	
	μg		μg/m³	$\mu g/m^3$	μg/m³		$\mu g/m^3$				μg/m³				mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.									65	65	73	74	75			
02.									51	53	67	67	68			
03.									56	57	61	61	66			
04.									67	67	72	74	74			
05.									88	88	97	97	97			
So 06.									68	70	65	65	67			
07.									79	79	85	87	88			
08.									85	86	94	95	95			
09.									83	83	89	89	89			
10.									80	80	82	82	83			
11.									75	75	79	79	80			
12.									80	80	89	90	90			
So 13.									90	90	96	96	98			
14.									79	79	85	85	85			
15.									67	67	69	69	70			
16.									80	80	83	84	85			
17.									89	89	90	90	91			
18.									87	88	94	94	94			
19.									83	83	86	89	87			
So 20.									88	88	90	91	91			
21.									86	86	88	88	88			
22.									52	52	59	59	60			
23.									61	61	73	74	75			
24.									61	61	71	72	74			
25.									73	73	85	85	86			
26.									95	95	101	101	102			
So 27.									102	102	107	107	107			
28.									95	95	100	101	101			
29.									91	91	79	80	80			
30.									98	98	99	99	99			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						107	
Max.01-M						107	
Max.3-MW							
Max.08-M							
Max.8-MW						102	
Max.TMW						75	
97,5% Perz.							
MMW						59	
Gl.JMW							


Messstelle: INNSBRUCK / Sadrach

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungshozogono Cronzworto						

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	e)			
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				27	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				1	
ÖAW: SO2-Kriterium für Siedlungsgebiete					
VDI-RL 2310: NO-Grenzwert					

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Zeitraum: APRIL 2008 Messstelle: NORDKETTE

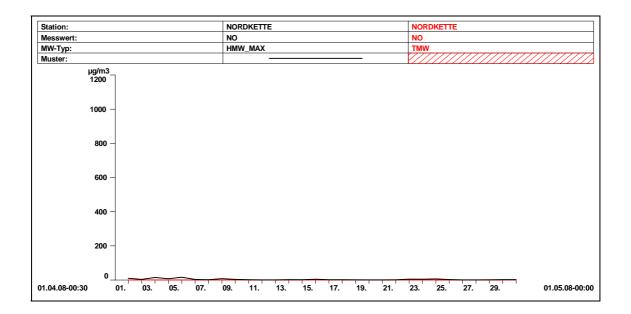
	SC)2	PM10	PM10	NO		NO2		03			СО				
			kont.	grav.	, ,				_							
	μg	/m³	μg/m³	μg/m³	μg/m³		$\mu g/m^3$				μg/m³	1			mg/m³	I
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.					10		10	10	94	94	100	100	100			
02.					4	4	12	13	98	98	100	100	100			
03.					15	5	12	15	93	94	101	102	102			
04.					7	2	4	7	112	112	117	117	118			
05.					17	2	5	7	123	124	127	127	127			
So 06.					4	2	4	4	122	122	124	124	124			
07.					2	1	9	11	122	122	130	130	131			
08.					8	4	7	8	131	131	133	133	134			
09.					4	3	6	6	123	123	124	124	124			
10.					2	2	4	5	107	107	109	109	109			
11.					1	2	9	12	101	101	103	103	105			
12.					1	4	6	6	111	111	115	116	117			
So 13.					2	3	6	6	118	118	120	120	120			_
14.					2	2	5	5	113	113	114	114	114			
15.					5	3	7	8	108	108	110	110	110			
16.					2	4	8	9	119	118	124	124	125			
17.					2	4	6	7	123	123	125	125	125			
18.					2	3	5	5	122	122	122	122	124			
19.					1	1	2	3	119	119	123	124	125			
So 20.					1	1	2	2	119	119	118	118	118			
21.					2	3	7	9	115	115	116	116	117			
22.					5	4	9	_	94	93	93	93	93			
23.					5	3	6	7	109	109	115	115	115			
24. 25.					6	2	7	7 5	118	118	121	121	122			
25. 26.					3 1	1 1	2	3	119 125	119 125	121 133	121 133	122 133			
So 27.					1	2	3	3	134	134	136	136	136			
28.					2	3	6	6	134	134	129	130	130			
29.					2	2	5	6	129	129	132	130	131			
30.					2	3	5	5	129	129	125	125	125			
30.						3	J	J	123	123	123	123	123			

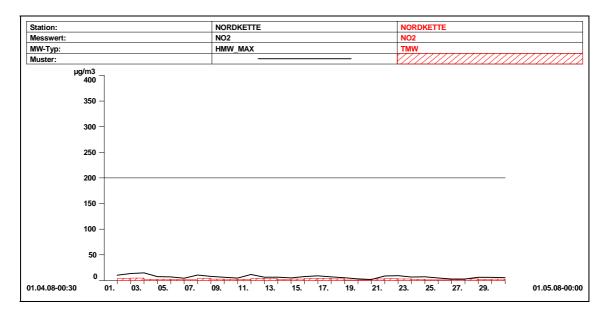
	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	μg/m³	mg/m³				
Anz. Messtage				29	29	30	
Verfügbarkeit				98%	98%	98%	
Max.HMW				17	15	136	
Max.01-M					12	136	
Max.3-MW					11		
Max.08-M							
Max.8-MW						134	
Max.TMW				2	5	130	
97,5% Perz.							
MMW				1	3	108	
GLJMW					4		

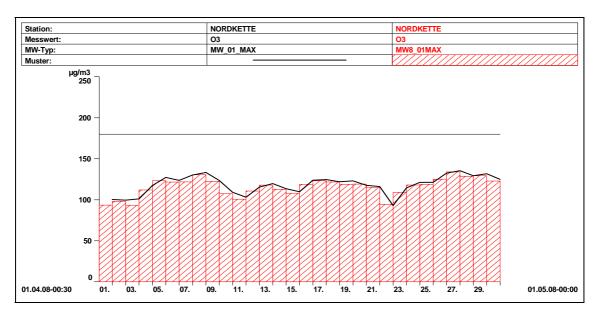
0

Zeitraum: **APRIL 2008** Messstelle: NORDKETTE

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				0		
IG-L: Zielwerte Ökosysteme, Vegetation				0		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					12	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				0	30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	26	
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

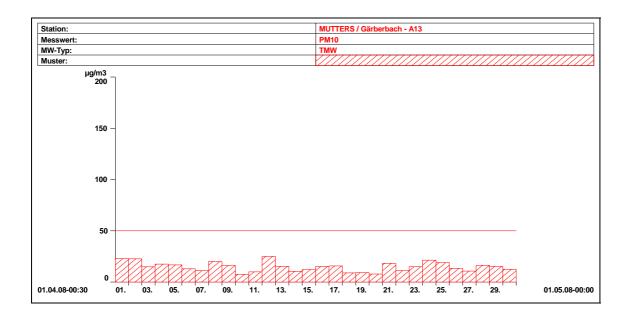
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

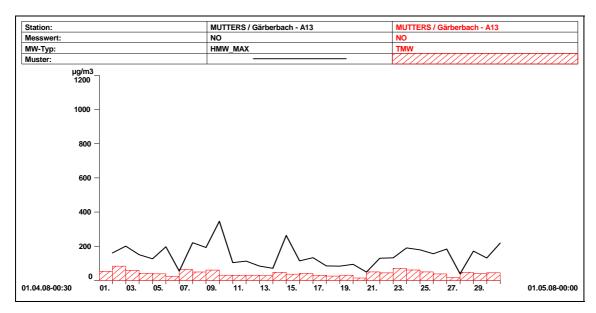
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

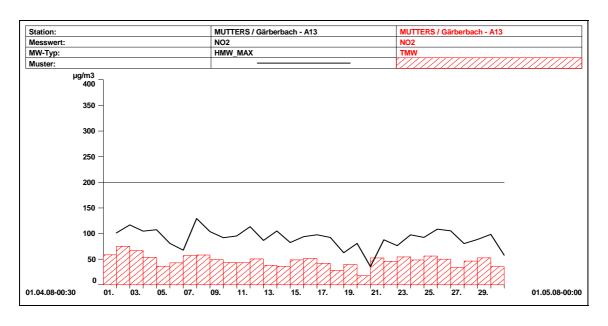
Messstelle: MUTTERS / Gärberbach - A13

	SC	02	PM10	PM10	NO	NO2					03				CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$	1			mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			23		161	58	98	101								
02.			23		200	75	107	117								
03.			15		151	67	99	105								
04.			18		126	53	82	108								
05.			17		197	36	74	81								
So 06.			13		54	43	63	67								
07.			11		221	57	110	129								
08.			20		193	58	99	104								
09.			16		346	49	86	92								
10.			8		104	43	89	95								
11.			10		113	43	109	113								
12.			25		84	50	77	87								
So 13.			15		71	38	97	105								
14.			10		264	36	79	82								
15.			12		114	49	86	94								
16.			15		133	51	89	98								
17.			16		85	42	91	92								
18.			9		83	28	57	62								
19.			9		94	39	78	81								
So 20.			8		49	18	33	35								
21.			18		130	52	84	88								
22.			11		132	46	75	76								
23.			15		190	54	88	97								
24.			21		179	48	89	93								
25.			19		156	56	106	109								
26.			13		184	50	101	105								
So 27.			11		39	34	72	81								
28.			16		172	46	84	88								
29.			15		131	52	95	98								
30.			13		218	35	52	58								

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage		30		30	30		
Verfügbarkeit		100%		99%	99%		
Max.HMW				346	129		
Max.01-M					110		
Max.3-MW					108		
Max.08-M							
Max.8-MW							
Max.TMW		25		84	75		
97,5% Perz.							
MMW		15		43	47		
Gl.JMW		-		-	51		


Messstelle: MUTTERS / Gärberbach - A13


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				27		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: HALL IN TIROL / Sportplatz

	SC)2	PM10	PM10	NO	_	NO2		_		03	_			СО	_
			kont.	grav.					_					_		_
	μg		μg/m³	$\mu g/m^3$	$\mu g/m^3$		μg/m³	l			μg/m³	ı			mg/m³	I
	T) () ()	max	T) () ()	TD 4337	max	T 131	max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				21	49	36	71	75								
02.				18	109	58	86	96								
03.				12	61	55	79	82								
04.				13	65	44	76	79 50								
05.				14	56 7	29	44 44	50 47								
So 06.				9	147	28 51	114	119								
08.				21	56	55	82	82								
09.				17	273	35	76	86								
10.				11	188	33	86	95								
11.				12	95	34	74	80								
12.				18	35	37	71	83								
So 13.				13	20	29	61	70								
14.				12	176	30	74	75								
15.				6	15	25	70	78								
16.				13	28	30	73	79								
17.				15	227	30	61	71								
18.				16	70	35	77	83								
19.				8	10	22	51	51								
So 20.				7	16	22	48	59								
21.				23	95	54	74	76								
22.				8	82	55	93	99								
23.				11	27	35	60	60								
24.				17	127	31	45	45								
25.				11	84	39	70	75								
26.				10	68	29	70	76								
So 27.				13	23	32	74	80								
28.				22	241	43	89	98								
29.				8	26	34	98	104								
30.				15	121	26	70	75								

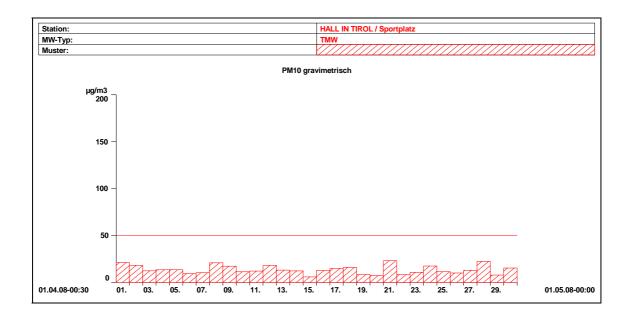
	SO2	PM10	PM10	NO	NO2	03	со
	$\mu g/m^3$	kont. μg/m³	grav. μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	F-8	P-8/	30	30	30	P-8	
Verfügbarkeit			100%	98%	98%		
Max.HMW				273	119		
Max.01-M					114		
Max.3-MW					107		
Max.08-M							
Max.8-MW							
Max.TMW			23	36	58		
97,5% Perz.							
MMW			14	14	37		
Gl.JMW	·				43		

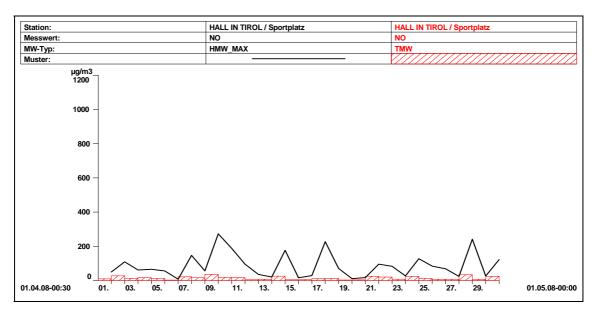
0

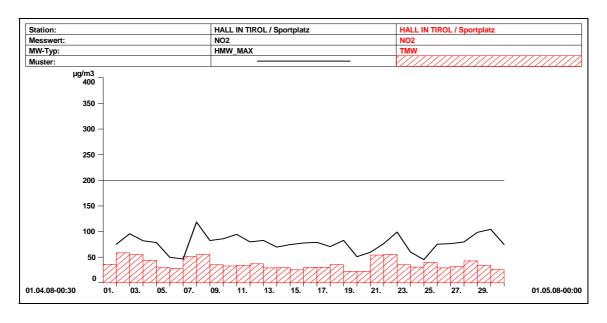
Zeitraum: **APRIL 2008**

Messstelle: HALL IN TIROL / Sportplatz

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				13		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete			•			

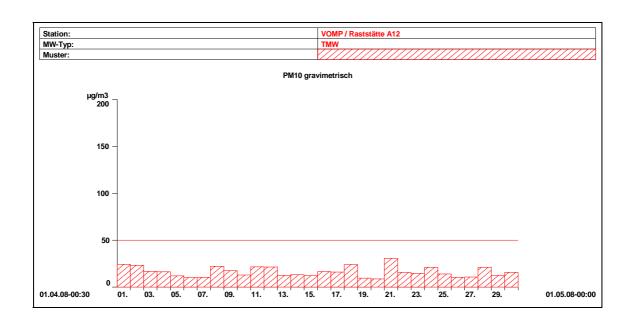

VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

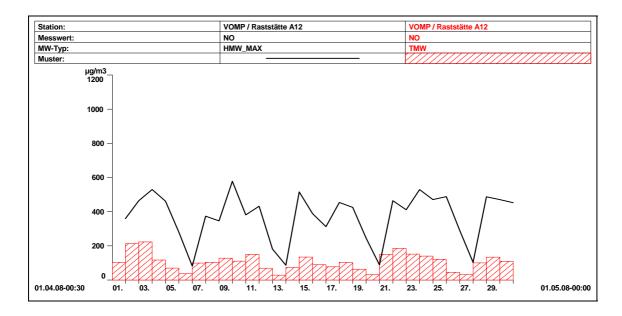
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

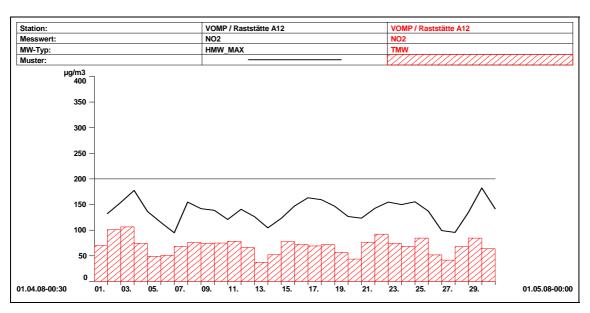
Messstelle: VOMP / Raststätte A12


	SO)2	PM10	PM10	NO		NO2				03				со	
			kont.	grav.												
	μg	/m³	μg/m³	$\mu g/m^3$	μg/m³		$\mu g/m^3$				μg/m³				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				24	359	70	124	132								
02.				23	464	101	152	154								
03.				17	530	106	162	178								
04.				16	462	74	116	136								
05.				12	280	49	87	115								
So 06.				10	81	51	88	95								
07.				10	374	68	153	155								
08.				22	346	76	141	142								
09.				17	578	74	126	139								
10.				13	382	75	117	121								
11.				22	432	78	138	141								
12.				21	181	66	115	126								
So 13.				12	87	37	71	104								
14.				13	516	52	99	123								
15.				12	388	77	143	147								
16.				17	313	72	131	163								
17.				16	454	69	139	160								
18.				24	425	72	146	147								
19.				10	246	56	113	127								
So 20.				9	89	44	105	123								
21.				31	464	76	129	143								
22.				16	412	92	153	155								
23.				15	530	74	140	150								
24.				21	471	68	145	155								
25.				14	488	84	134	137								
26.				10	291	52	85	99								
So 27.				11	104	42	81	96								
28.				21	487	68	125	135								
29.				12	471	84	175	182								
30.				16	453	64	139	142								

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				578	182		
Max.01-M					175		
Max.3-MW					156		
Max.08-M							
Max.8-MW							
Max.TMW			31	223	106		
97,5% Perz.							
MMW			16	106	69		
GLJMW					67		

Messstelle: VOMP / Raststätte A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		5		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				30		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				5		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: VOMP / An der Leiten

	SC)2	PM10 kont.	PM10	NO	_	NO2			_	03		_		со	
	μg	/m³	μg/m ³	grav. μg/m³	μg/m³		$\mu g/m^3$				μg/m³				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			21		81	43	83	84								
02.			19		247	68	94	104								
03.			9		194	63	91	100								
04.			13		40	43	73	79								
05.			13		80	33	59	64								
So 06.			12		29	33	51	57								
07.			9		60	45	89	90								
08.			20		75	53	96	96								
09.			16		313	46	71	74								
10.			11		136	48	73	77								
11.			20		312	54	89	90								
12.			18		27	34	63	66								
So 13.			9		33	28	55	62								
14.			12		237	31	59	73								
15.			8		139	42	91	95								
16.			17		64	36	74	81								
17.			15		53	40	80	86								
18.			23		163	44	72	75								
19.			9		101	34	81	83								
So 20.			10		46	28	61	68								
21.			31		161	53	75	77								
22.			9		162	54	94	95								
23.			10		128	45	68	76								
24.			18		187	38	60	65								
25.			11		189	49	80	84								
26.			8		134	36	71	74								
So 27.			13		64	32	73	76								
28.			21		149	42	82	88								
29.			9		89	45	101	105								
30.			12		207	38	103	106								

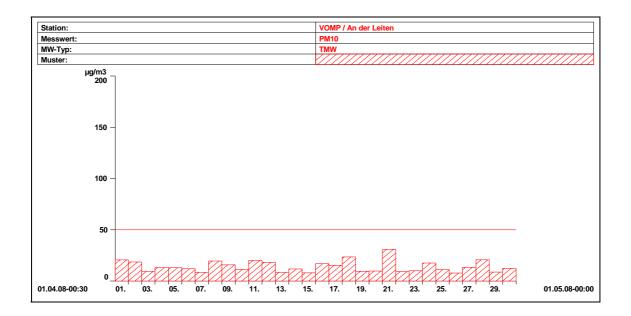
	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage		30		30	30		
Verfügbarkeit		100%		98%	98%		
Max.HMW				313	106		
Max.01-M					103		
Max.3-MW					98		
Max.08-M							
Max.8-MW							
Max.TMW		31		65	68		
97,5% Perz.							
MMW		14		27	43		·
Gl.JMW			-	·	43	-	

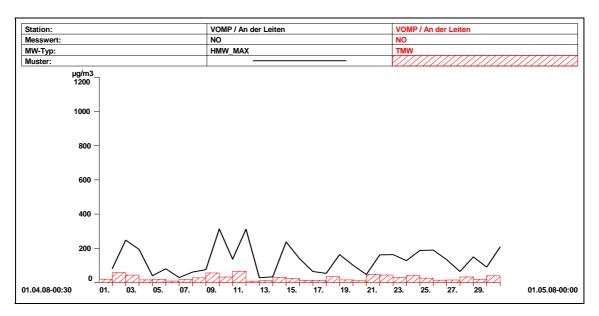
0

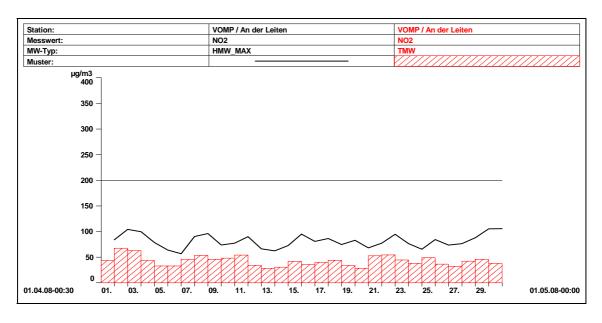
Zeitraum: **APRIL 2008**

Messstelle: VOMP / An der Leiten

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				21		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						

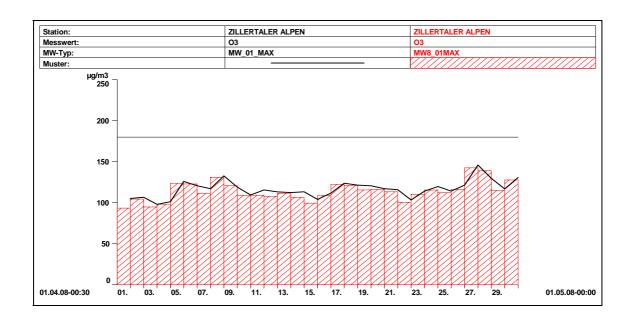

VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: ZILLERTALER ALPEN


	SC)2	PM10	PM10	NO		NO2	_			03	_	_	_	CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									93	93	105	105	106			
02.									104	105	107	107	108			
03.									95	95	98	98	98			
04.									98	98	101	101	102			
05.									124	123	126	126	127			
So 06.									123	123	121	121	122			
07.									112	112	117	117	117			
08.									131	131	133	133	133			
09.									121	121	119	119	119			
10.									109	109	109	109	110			
11.									109	109	116	116	117			
12.									108	108	113	114	114			
So 13.									112	112	112	112	113			
14.									106	106	113	114	114			
15.									99	99	104	104	104			
16.									109	109	112	112	112			
17.									122	122	124	124	124			
18.									121	121	121	121	124			
19.									116	116	121	123	122			
So 20.									116	117	117	118	118			
21.									113	113	116	116	116			
22.									100	101	103	105	105			
23.									110	110	114	114	114			
24.									116	116	120	120	120			
25.									112	112	114	115	116			
26.									116	117	121	121	122			
So 27.									142	143	146	146	146			
28.									139	139	130	130	130			
29.									115	115	117	117	118			
30.									128	127	131	131	131			

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						146	
Max.01-M						146	
Max.3-MW							
Max.08-M							
Max.8-MW						143	
Max.TMW						135	
97,5% Perz.							
MMW						105	
Gl.JMW							

Messstelle: ZILLERTALER ALPEN

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					9	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					26	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

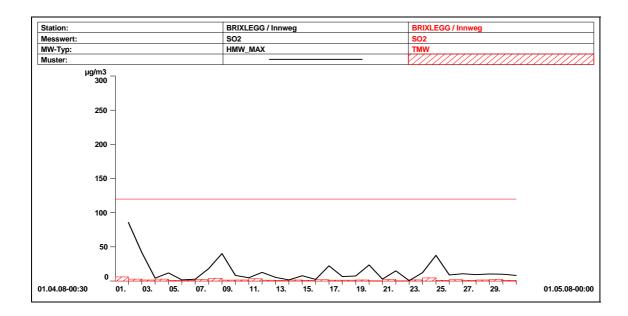
 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

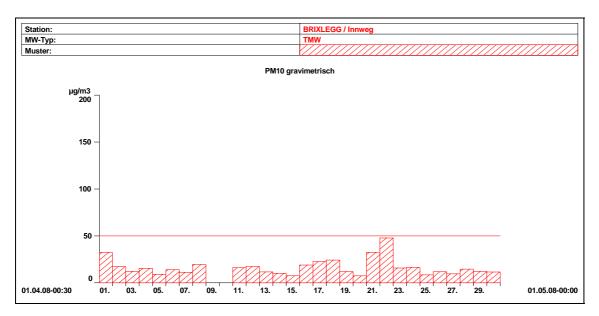
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: BRIXLEGG / Innweg

	SC)2	PM10	PM10	NO		NO2	_	_		03		_	_	CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	6	86		32												
02.	3	42		17												
03.	2	4		12												
04.	3	12		15												
05.	1	2		9												
So 06.	1	3		14												
07.	2	18		11												
08.	4	40		19												
09.	1	8														
10.	2	5														
11.	3	13		16												
12.	1	5		17												
So 13.	1	2		12												
14.	2	8		10												
15.	1	2		8												
16.	2	22		19												
17.	1	7		23												
18.	1	7		24												
19.	2	24		12												
So 20.	0	3		7												
21.	2	15		32												
22.	0	1		48												
23.	2	12		16												
24.	5	38		16												
25.	1	9		8												
26.	2	11		12												
So 27.	1	9		10												
28.	2	10		15												
29.	2	10		12												
30.	1	8		12												

	SO2	PM10	PM10	NO	NO2	03	CO
		kont.	grav.				
	$\mu g/m^3$	μg/m³	mg/m³				
Anz. Messtage	30		28				
Verfügbarkeit	98%		93%				
Max.HMW	86						
Max.01-M							
Max.3-MW	27						
Max.08-M							
Max.8-MW							
Max.TMW	6		48				
97,5% Perz.	9			-	-		
MMW	2	·	16				
Gl.JMW		·					


Messstelle: BRIXLEGG / Innweg


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0					
IG-L: Grenzwerte menschliche Gesundheit	0	0				
IG-L: Zielwerte menschliche Gesundheit		0				
IG-L: Zielwerte Ökosysteme, Vegetation	0					
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)						
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KRAMSACH / Angerberg

Tag		SC)2	PM10	PM10	NO		NO2				03			СО	
Tag TMW HMW TMW TMW HMW TMW HMW TMW O1-M HMW O8-M 8-MW O1-M I-MW HMW 8-MW O1-M HMW O1-M HMW O1-M I-MW HMW R-MW O1-M HMW O1-M I-MW I-			/ 2	kont.	grav.	/ 2		/ 2				/ 2			/ 2	_
Tag		μg		μg/m³	μg/m³	-		1				1	1			
02. 61 34 70 82 59 59 72 72 73 03. 9 18 30 38 69 74 64 64 74 76 79 04. 9 18 30 38 73 73 83 85 05. 4 13 30 34 109 117 117 118 80 11 36 41 84 86 86 87 07. 11 13 37 38 96 96 105 105 106 08. 19 27 48 49 84 84 95 95 96 09. 129 22 47 53 95 95 103 104 104 10. 152 20 65 66 99 99 109 109 109 11. 10 115 8	Tag	TMW		TMW	TMW		TMW									
02. 61 34 70 82 59 59 72 72 73 03. 133 38 69 74 64 64 74 76 79 04. 9 18 30 38 73 73 83 83 85 05. 8 11 36 41 84 86 86 87 07. 11 13 37 38 96 96 105 105 106 08. 19 27 48 49 84 84 95 95 96 09. 129 22 47 53 95 95 103 104 104 10. 152 20 65 66 99 99 109 109 109 11. 67 23 59 60 86 86 102 102 102 12. 7 12	01.					9	21	38	44	81	81	81	81	82		
04. 9 18 30 38 73 73 83 83 85 05. 4 13 30 34 109 109 117 117 118 80. 11 36 41 84 86 86 87 07. 111 13 37 38 96 96 105 106 08. 19 27 48 49 84 84 95 95 96 09. 129 22 47 53 95 95 103 104 104 10. 152 20 65 66 99 99 109 109 109 11. 67 23 59 60 86 86 102 102 102 12. 7 12 23 27 96 96 102 102 103 10. 10 16 42 46<						61	34	70	82	59	59		72			
05. 4 13 30 34 109 109 117 117 118 118 8 11 36 41 84 86 86 86 87 87 11 13 37 38 96 96 105 105 106 106 106 108 109 129 22 47 53 95 95 96 99 99 102 102 102 102 102 102 102 102 103 103 105 118 144 133 26 26 107 107 111 111 111 113 111 <	03.					133	38	69	74	64	64	74	76	79		
So 06. 8 11 36 41 84 86 86 87 07. 11 13 37 38 96 96 105 105 106 08. 19 27 48 49 84 84 95 95 96 09. 129 22 47 53 95 95 103 104 104 10. 152 20 65 66 99 99 109 109 109 11. 67 23 59 60 86 86 102 102 102 12. 7 12 23 27 96 96 102 102 103 So 13. 8 13 26 26 107 107 111 111 113 113 14 14. 29 16 42 46 94 94 103 103 105	04.					9	18	30	38	73	73	83	83	85		
07. 08. 11 13 37 38 96 96 105 106 106 08. 19 27 48 49 84 84 95 95 96 09. 129 22 47 53 95 95 103 104 104 10. 152 20 65 66 99 99 109 109 109 11. 67 23 59 60 86 86 102 102 102 12. 7 12 23 27 96 96 102 102 103 So 13. 8 13 26 26 107 107 111 111 113 113 14. 14. 29 16 42 46 94 94 103 103 105 15. 18 55 56 87 86 90 90 90 16. 28 18 42 47 99 99 108 108<	05.					4	13	30	34	109	109	117	117	118		
08. 19 27 48 49 84 84 95 95 96 09. 129 22 47 53 95 95 103 104 104 10. 152 20 65 66 99 99 109 109 109 11. 67 23 59 60 86 86 102 102 102 12. 7 12 23 27 96 96 102 102 103 So 13. 8 13 26 26 107 107 111 111 113 14. 29 16 42 46 94 94 103 103 105 15. 18 55 56 87 86 90 90 90 16. 28 18 42 47 99 99 108 108 109 17. 10 19 51 61 97 97 105 105 105 18.<	So 06.					8	11	36	41	84	86	86	86	87		
09. 129 22 47 53 95 95 103 104 104 10. 152 20 65 66 99 99 109 109 109 11. 67 23 59 60 86 86 102 102 102 12. 7 12 23 27 96 96 102 102 103 So 13. 8 13 26 26 107 107 111 111 113 14. 29 16 42 46 94 94 103 103 105 15. 18 55 56 87 86 90 90 90 16. 28 18 42 47 99 99 108 108 109 17. 10 19 51 61 97 97 105 105 105 18. 124 34 60 60 72 74 83 83 114 19						11	13	37	38	96	96	105	105	106		
10. 152 20 65 66 99 99 109 109 109 109 1109 1109 1109 1109 1109 1109 1109 1109 1109 1109 1109 1109 1109 1109 1109 1109 1109 1102 1102 1102 1102 1102 1102 1103 103 103 103 103 103 105 111 111 111 111 113 111 1	08.					19	27	48	49	84	84	95	95	96		
11. 12. 67 23 59 60 86 86 102 102 102 So 13. 8 13 26 26 107 107 111 111 113 14. 29 16 42 46 94 94 103 103 105 15. 15 18 55 56 87 86 90 90 90 16. 28 18 42 47 99 99 108 108 109 17. 10 19 51 61 97 97 105 105 105 18. 14 39 41 91 95 107 111 109 So 20. 4 9 19 19 107 108 114 114 115 21. 111 36 66 67 79 81 51 51 54 22. 15 19 42 50 65 65 79 79 80	09.					129	22	47	53	95						
12. 7 12 23 27 96 96 102 102 103 13. 8 13 26 26 107 107 111 111 113 14. 29 16 42 46 94 94 103 103 105 15. 15 18 55 56 87 86 90 90 90 16. 28 18 42 47 99 99 108 108 109 17. 10 19 51 61 97 97 105 105 105 18. 124 34 60 60 72 74 83 83 114 19. 18 14 39 41 91 95 107 111 109 So 20. 4 9 19 19 107 108 114 114 115 21. 111 36 66 67 79 81 51 51 54 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>99</td><td>99</td><td>109</td><td></td><td></td><td></td><td></td></tr<>										99	99	109				
So 13. 8 13 26 26 107 107 111 111 113 14. 15. 15 18 55 56 87 86 90 90 90 15. 15 18 55 56 87 86 90 90 90 16. 28 18 42 47 99 99 108 108 109 17. 10 19 51 61 97 97 105 105 105 18. 124 34 60 60 72 74 83 83 114 19. 18 14 39 41 91 95 107 111 109 So 20. 4 9 19 19 107 108 114 114 115 21. 111 36 66 67 79 81 51 51 54 22. 15 19 42 50 65 65 79 79 80							_			86						
14. 29 16 42 46 94 94 103 103 105 15. 15 18 55 56 87 86 90 90 90 16. 28 18 42 47 99 99 108 108 109 17. 10 19 51 61 97 97 105 105 105 18. 124 34 60 60 72 74 83 83 114 19. 18 14 39 41 91 95 107 111 109 So 20. 4 9 19 19 107 108 114 115 21. 111 36 66 67 79 81 51 51 54 22. 13 22 46 56 65 64 71 71 72 23. 15 19 42 50 65 65 79 79 80 24.																
15. 15 18 55 56 87 86 90 90 90 16. 28 18 42 47 99 99 108 108 109 17. 10 19 51 61 97 97 105 105 105 18. 124 34 60 60 72 74 83 83 114 19. 18 14 39 41 91 95 107 111 109 So 20. 4 9 19 19 107 108 114 115 21. 111 36 66 67 79 81 51 51 54 22. 13 22 46 56 65 64 71 71 72 23. 15 19 42 50 65 65 79 79 80 24. 35 14 32 33 85 85 99 103 105 25.																
16. 28 18 42 47 99 99 108 108 109 17. 10 19 51 61 97 97 105 105 105 18. 124 34 60 60 72 74 83 83 114 19. 18 14 39 41 91 95 107 111 109 So 20. 4 9 19 19 107 108 114 114 115 21. 111 36 66 67 79 81 51 51 54 22. 13 22 46 56 65 64 71 71 72 23. 15 19 42 50 65 65 79 79 80 24. 35 14 32 33 85 85 99 103 105 25. 22 11 36 41 108 108 113 113 114																
17. 10 19 51 61 97 97 105 105 105 18. 124 34 60 60 72 74 83 83 114 19. 18 14 39 41 91 95 107 111 109 So 20. 4 9 19 19 107 108 114 114 115 21. 111 36 66 67 79 81 51 51 54 22. 13 22 46 56 65 64 71 71 72 23. 15 19 42 50 65 65 79 79 80 24. 35 14 32 33 85 85 99 103 105 25. 5 10 25 29 96 97 108 109 111 26. 22 11 36 41 108 108 113 113 114																
18. 124 34 60 60 72 74 83 83 114 19. 18 14 39 41 91 95 107 111 109 So 20. 4 9 19 19 107 108 114 114 115 21. 111 36 66 67 79 81 51 51 54 22. 13 22 46 56 65 64 71 71 72 23. 15 19 42 50 65 65 79 79 80 24. 35 14 32 33 85 85 99 103 105 25. 5 10 25 29 96 97 108 109 111 26. 22 11 36 41 108 108 113 113 114 So 27. 6 8 17 20 127 127 139 139 139 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>																
19. 18 14 39 41 91 95 107 111 109 So 20. 4 9 19 19 107 108 114 114 115 21. 111 36 66 67 79 81 51 51 54 22. 13 22 46 56 65 64 71 71 72 23. 15 19 42 50 65 65 79 79 80 24. 35 14 32 33 85 85 99 103 105 25. 5 10 25 29 96 97 108 109 111 26. 22 11 36 41 108 108 113 113 114 So 27. 6 8 17 20 127 127 139 139 139 28. 33 49 54 100 103 93 93 93																
So 20. 4 9 19 19 107 108 114 114 115 21. 111 36 66 67 79 81 51 51 54 22. 13 22 46 56 65 64 71 71 72 23. 15 19 42 50 65 65 79 79 80 24. 35 14 32 33 85 85 99 103 105 25. 5 10 25 29 96 97 108 109 111 26. 22 11 36 41 108 108 113 113 114 So 27. 6 8 17 20 127 127 139 139 139 28. 33 49 54 100 103 93 93 93							_									
21. 111 36 66 67 79 81 51 51 54 22. 13 22 46 56 65 64 71 71 72 23. 15 19 42 50 65 65 79 79 80 24. 35 14 32 33 85 85 99 103 105 25. 5 10 25 29 96 97 108 109 111 26. 22 11 36 41 108 108 113 113 114 So 27. 6 8 17 20 127 127 139 139 139 28. 33 49 54 100 103 93 93 93																
22. 13 22 46 56 65 64 71 71 72 23. 15 19 42 50 65 65 79 79 80 24. 35 14 32 33 85 85 99 103 105 25. 5 10 25 29 96 97 108 109 111 26. 22 11 36 41 108 108 113 113 114 So 27. 6 8 17 20 127 127 139 139 139 28. 33 49 54 100 103 93 93 93																
23. 15 19 42 50 65 65 79 79 80 24. 35 14 32 33 85 85 99 103 105 25. 5 10 25 29 96 97 108 109 111 26. 22 11 36 41 108 108 113 113 114 So 27. 6 8 17 20 127 127 139 139 139 28. 33 49 54 100 103 93 93 93																
24. 35 14 32 33 85 85 99 103 105 25. 5 10 25 29 96 97 108 109 111 26. 22 11 36 41 108 108 113 113 114 So 27. 6 8 17 20 127 127 139 139 139 28. 33 49 54 100 103 93 93 93								_								
25. 5 10 25 29 96 97 108 109 111 26. 22 11 36 41 108 108 113 113 114 So 27. 6 8 17 20 127 127 139 139 139 28. 33 49 54 100 103 93 93 93							-									
26. 22 11 36 41 108 108 113 114 So 27. 6 8 17 20 127 127 139 139 139 28. 33 49 54 100 103 93 93 93																
So 27. 6 8 17 20 127 127 139 139 139 28. 33 49 54 100 103 93 93 93																
28. 33 49 54 100 103 93 93 93																
							0									
27. 3 1 10 10 71 71 73 73 70							7									
30. 26 12 24 24 114 115 121 123							-									

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage				29	29	29	
Verfügbarkeit				98%	98%	98%	
Max.HMW				152	82	139	
Max.01-M					70	139	
Max.3-MW					65		
Max.08-M							
Max.8-MW						127	
Max.TMW				24	38	86	
97,5% Perz.							
MMW			-	5	18	63	
Gl.JMW					25		

0

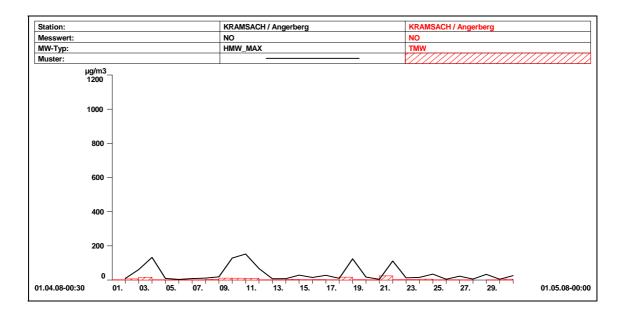
Zeitraum: APRIL 2008

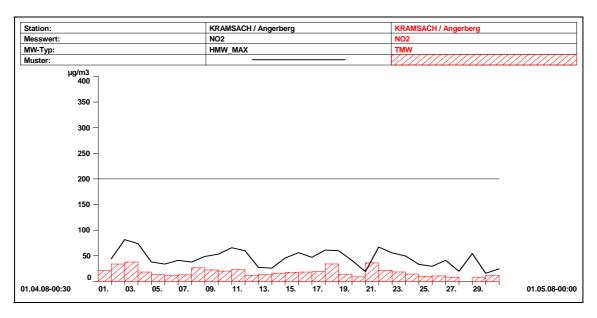
Messstelle: KRAMSACH / Angerberg

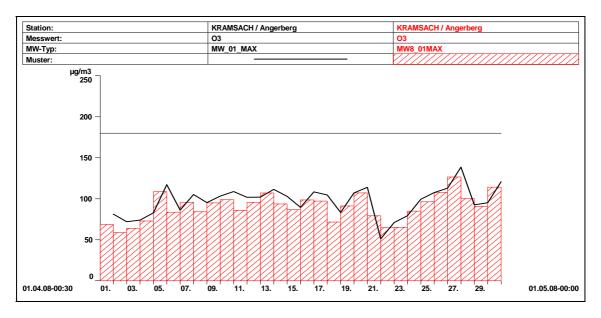
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				0		
IG-L: Zielwerte Ökosysteme, Vegetation				0		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					1	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				1	29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	7	

ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

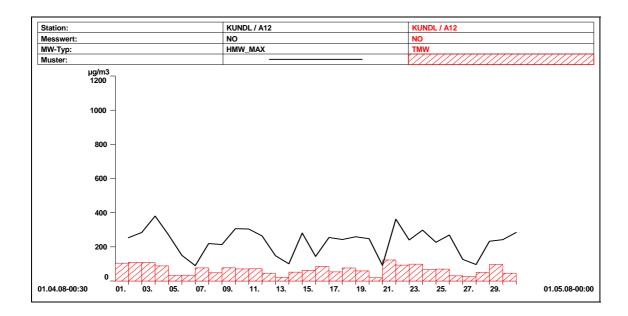
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

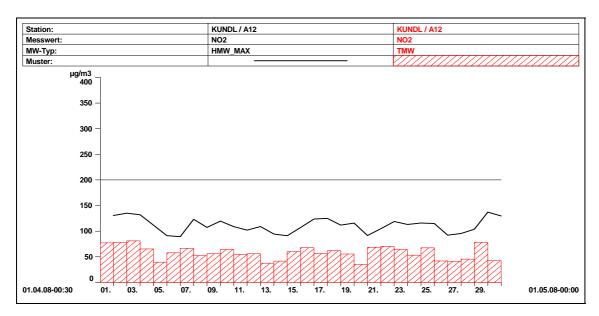
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: APRIL 2008 Messstelle: KUNDL / A12

	SO)2	PM10	PM10	NO		NO2			_	03	_			CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		\mug/m^3				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					254	77	124	131								
02.					284	78	119	135								
03.					380	81	129	132								
04.					270	65	106	112								
05.					150	39	70	91								
So 06.					90	58	85	89								
07.					219	66	122	123								
08.					214	52	100	107								
09.					306	56	113	120								
10.					304	64	99	109								
11.					264	55	94	102								
12.					148	56	106	109								
So 13.					101	37	81	94								
14.					281	42	76	91								
15.					144	60	92	107								
16.					255	68	120	124								
17.					243	56	117	125								
18.					259	62	102	112								
19.					248	55	106	116								
So 20.					92	35	86	92								
21.					362	68	101	105								
22.					240	70	104	119								
23.					298	64	110	113								
24.					227	53	115	116								
25.					269	68	115	115								
26.					127	42	82	92								
So 27.					97	41	88	95								
28.					233	45	92	104								
29.					242	78	133	137								
30.					285	42	122	130								

	SO2	PM10	PM10	NO	NO2	03	CO
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage				30	30		
Verfügbarkeit				98%	98%		
Max.HMW				380	137		
Max.01-M					133		
Max.3-MW					126		
Max.08-M							
Max.8-MW							
Max.TMW				123	81		
97,5% Perz.							
MMW				67	58		
Gl.JMW					61		


Zeitraum: **APRIL 2008** Messstelle: KUNDL / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				1		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONOEGETZ AL I	<u> </u>					
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				30		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: WÖRGL / Stelzhamerstrasse

	SC	02	PM10	PM10	NO		NO2				03				СО	
			kont.	grav.		_			_							
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		μg/m³				μg/m³				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			30		31	30	46	49								
02.			20		72	45	66	72								
03.			15		119	61	85	89								
04.			13		21	29	47	54								
05.			10		20	20	32	36								
So 06.			14		4	19	34	39								
07.			8		49	25	77	81								
08.			16		22	27	66	68								
09.			17		79	29	47	50								
10.			13		114	29	64	65								
11.			15		86	40	59	63								
12.			21		5	15	32	35								
So 13.			10		14	16	35	47								
14.			12		129	26	57	62								
15.			9		6	23	54	58								
16.			16		12	20	39	44								
17.			15		10	21	45	50								
18.			28		56	39	58	63								
19.			11		24	26	47	52								
So 20.			8		7	13	32	33								
21.			36		139	46	71	74								
22.			9		11	36	52	56								
23.			13		20	29	57	60								
24.			17		74	29	42	48								
25.			9		26	29	53	65								
26.			10		8	19	34	35								
So 27.			12		10	16	30	36								
28.			19		94	28	64	65								
29.			9		13	24	62	67								
30.			11		69	20	36	37								

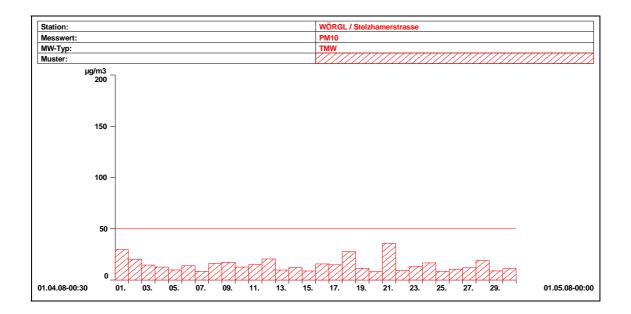
	SO2	PM10	PM10	NO	NO2	03	co
		kont.	grav.				
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage		30		30	30		
Verfügbarkeit		100%		98%	98%		
Max.HMW				139	89		
Max.01-M					85		
Max.3-MW					83		
Max.08-M							
Max.8-MW							
Max.TMW		36		33	61		
97,5% Perz.							
MMW	·	15	-	8	28		
Gl.JMW	·		-	·	32		

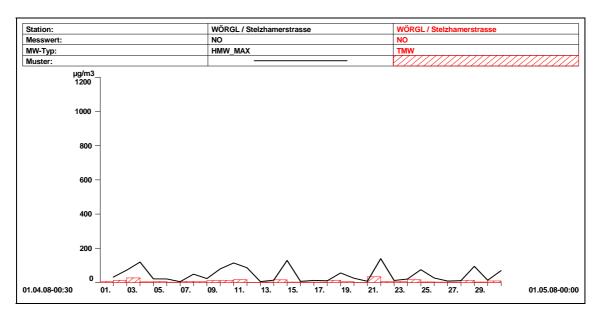
0

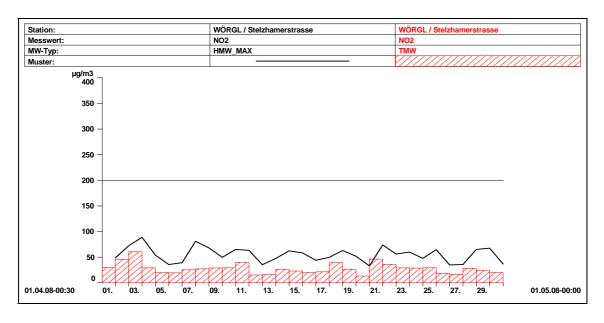
Zeitraum: **APRIL 2008**

Messstelle: WÖRGL / Stelzhamerstrasse

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				4		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert

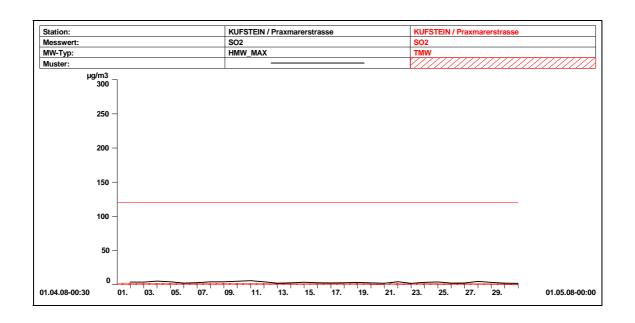

 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

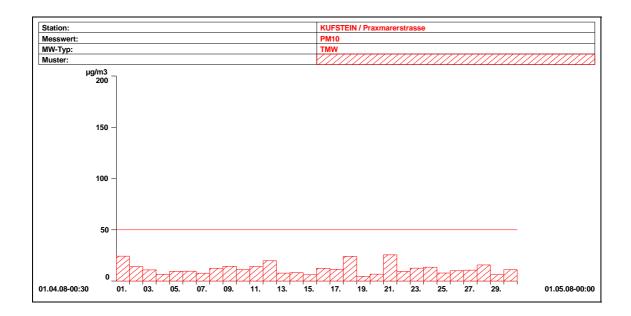
Messstelle: KUFSTEIN / Praxmarerstrasse

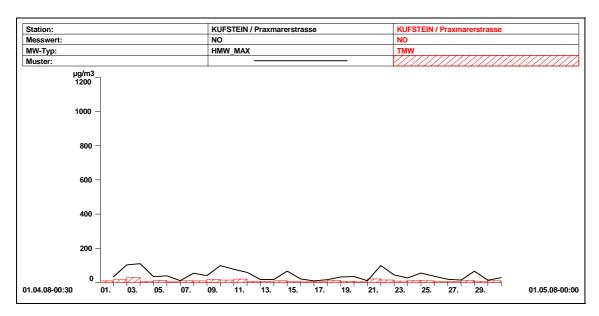
	S	02	PM10	PM10	NO		NO2				03			_	CO	_
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	2	4	24		33	31	60	68								
02.	2	4	14		102	44	71	73								
03.	2	5	11		110	56	90	93								
04.	2	4	7		34	26	55	61								
05.	2	2	9		39	24	42	50								
So 06.	2	3	10		11	17	31	35								
07.	2	4	8		54	25	75	76								
08.	2	4	13		40	30	47	49								
09.	2	5	14		98	34	53	61								
10.	2	6	11		77	29	53	56								
11.	2	4	14		59	34	56	61								
12.	1	2	20		17	23	39	44								
So 13.	1	3	8		17	18	39	47								
14.	1	4	8		66	22	52	55								
15.	1	3	6		20	21	47	50								
16.	1	3	12		9	20	38	38								
17.	1	3	11		16	21	50	56								
18.	2	3	24		32	32	46	49								
19.	1	3	5		35	23	53	57								
So 20.	1	2	7		10	12	24	30								
21.	2	4	26		99	35	67	69								
22.	1	2	9		44	37	59	61								
23.	2	3	13		26	25	41	43								
24.	2	4	13		55	22	35	44								
25.	1	2	8		36	29	59	65								
26.	1	2	10		19	15	23	23								
So 27.	1	5	11		14	16	31	32								
28.	1	3	16		66	28	62	67								
29.	1	2	6		13	22	51	56								
30.	1	2	11		28	20	38	41								

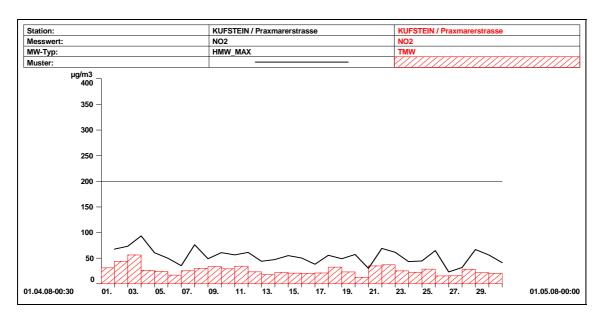

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	30	30		30	30		
Verfügbarkeit	98%	100%		98%	98%		
Max.HMW	6			110	93		
Max.01-M					90		
Max.3-MW	4				88		
Max.08-M							
Max.8-MW							
Max.TMW	2	26		29	56		
97,5% Perz.	4						
MMW	2	12		10	26		
Gl.JMW					28		

Messstelle: KUFSTEIN / Praxmarerstrasse

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				2		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

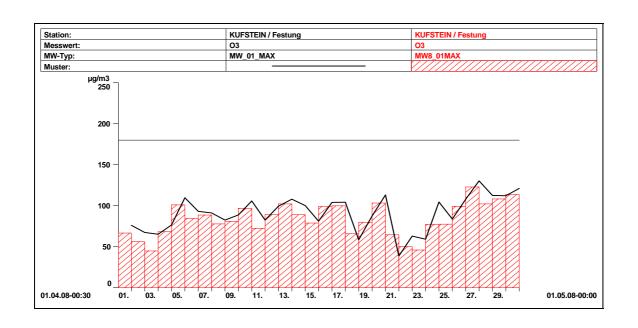


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: KUFSTEIN / Festung

	SC	02	PM10	PM10	NO		NO2		_	_	03	_		_	СО	
			kont.	grav.					_							
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³			ı	μg/m³	1			mg/m³	1
_		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									83	83	76	78	79			
02.									56	56	67	68	72			
03.									45	45	65	65	71			
04.									68	68	77	77	78			
05.									101	101	110	110	110			
So 06.									84 89	84	93	94 92	95 93			
07.									78	89 78	91 82	82	83			
09.									81	81	89	89	90			
10.									97	97	106	106	107			
11.									72	74	82	82	86			
12.									89	89	99	99	100			
So 13.									102	102	108	109	110			
14.									89	89	100	100	102			
15.									79	78	81	81	88			
16.									99	99	104	104	107			
17.									100	100	104	104	105			
18.									66	70	58	59	60			
19.									80	80	87	87	88			
So 20.									103	104	113	114	114			
21.									64	67	39	39	40			
22.									50	50	63	63	63			
23.									46	46	59	59	63			
24.									77	77	105	105	109			
25.									78	78	84	88	92			
26.									99	99	108	109	111			
So 27.									123	123	130	130	132			
28.									102	102	112	112	115			
29.									108	109	112	114	114			
30.									114	114	121	121	122			


	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						132	
Max.01-M						130	
Max.3-MW							
Max.08-M							
Max.8-MW						123	
Max.TMW						76	
97,5% Perz.							
MMW			-			55	
GLJMW							

Messstelle: KUFSTEIN / Festung

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					1	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte						

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)											
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					26						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					7						
ÖAW: SO2-Kriterium für Siedlungsgebiete											
VDI-RL 2310: NO-Grenzwert											

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: LIENZ / Amlacherkreuzung

	SC)2	PM10	PM10	NO	_	NO2		_		03	_			CO	_
			kont.	grav.					_		-					
	μg		μg/m³	μg/m³	μg/m³		μg/m³				μg/m³	1			mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
			1101 00						00-101	O-1V1 VV	01-W	1-101 00	11171 77			
01. 02.	2 2	5 5		21 17	171 124	39 34	91 67	96 83						0.5 0.5	0.8 0.6	0.8 0.7
03.	2	3		14	147	35	73	78						0.6	0.9	1.0
04.	2	5		14	180	43	90	102						0.7	1.0	1.2
05.	2	6		13	84	37	72	74						0.6	0.8	1.0
So 06.	2	2		15	29	23	36	41						0.5	0.5	0.6
07.	2	4		16	173	44	118	125						0.8	1.0	1.0
08.	2	4		26	163	37	65	80						0.7	0.8	1.0
09.	2	4		30	186	36	63	63						0.7	0.9	0.9
10.	2	4		20	236	32	61	74						0.6	1.0	1.3
11.	2	4		21	224	43	89	108						0.7	0.9	1.2
12.	1	3		12	68	28	59	70						0.5	0.6	0.7
So 13.	1	2		16	44	22	33	36						0.5	0.5	0.5
14.	2	3		16	173	34	68	76						0.6	0.8	0.9
15.	1	3		10	118	39	67	78						0.5	0.5	0.6
16.	2	7		14	171	44	90	107						0.6	0.9	1.2
17.	1	2		16	74	34	63	68						0.5	0.6	0.8
18.	2	3		19	199	39	76	88						0.7	0.9	1.2
19.	1	2		11	72	28	47	50						0.5	0.6	0.7
So 20.	1	2		12	33	18	30	41						0.4	0.4	0.5
21.	2	3		17	120	40	76	79						0.5	0.6	0.9
22.	1	2		12	154	37	85	85						0.6	0.8	0.9
23.	1	3		16	149	38	74	75						0.5	0.7	0.8
24.	1	3		13	96	36	71	89						0.4	0.6	0.7
25. 26	1	3		12 9	155	37 28	72 57	78 65						0.5 0.4	0.6 0.5	0.8
26. So 27.	1	2		10	63 23	28 19	32	65 33						0.4	0.5	0.6
28.	2	2		20	107	38	32 77	88						0.5	0.4	0.4
29.	1	3		20	154	36 45	108	122						0.5	0.6	0.7
30.	1	2		20 16	100	37	58	76						0.6	0.7	1.0
30.	I			10	100	3/	38	70			l		l	0.5	0.8	1.0

	SO2	PM10	PM10	NO	NO2	03	со
	$\mu g/m^3$	kont. μg/m³	grav. μg/m³	$\mu g/m^3$	μg/m³	μg/m³	mg/m³
Anz. Messtage	30		30	30	30		
Verfügbarkeit	98%		100%	98%	98%		99%
Max.HMW	7			236	125		
Max.01-M					118		1.0
Max.3-MW	4				102		
Max.08-M							
Max.8-MW							0.8
Max.TMW	2		30	71	45		
97,5% Perz.	3						
MMW	2		16	36	35	-	0.4
GLJMW	•				41		

Messstelle: LIENZ / Amlacherkreuzung

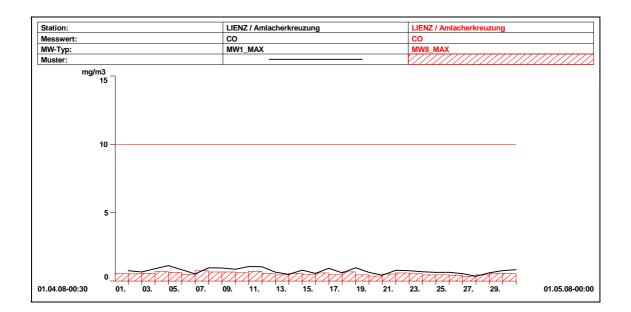
Anzahl der Tage mit Grenzwertüberschreitungen

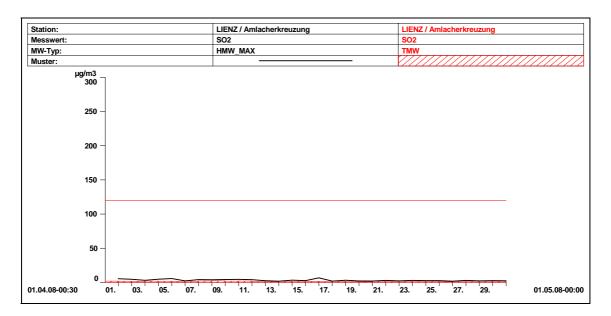
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	0		0		0
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				11		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		

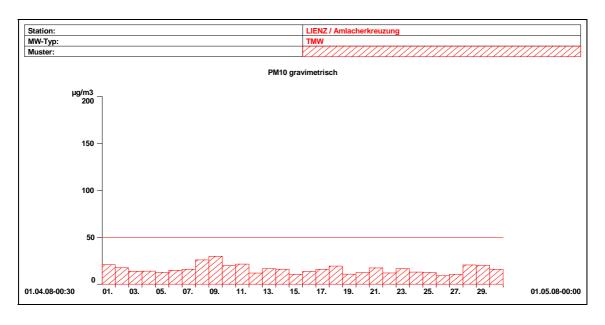
ÖAW: SO2-Kriterium für Siedlungsgebiete

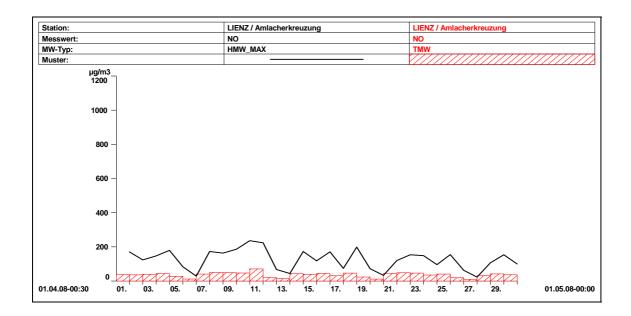
VDI-RL 2310: NO-Grenzwert

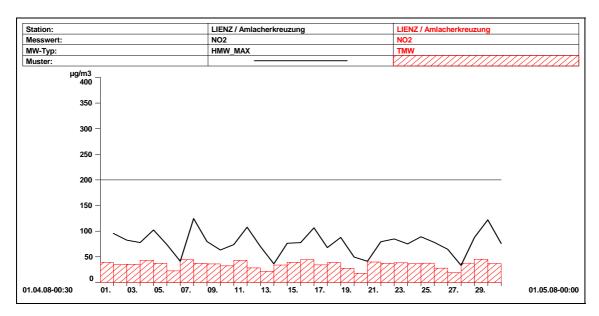
0


0


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

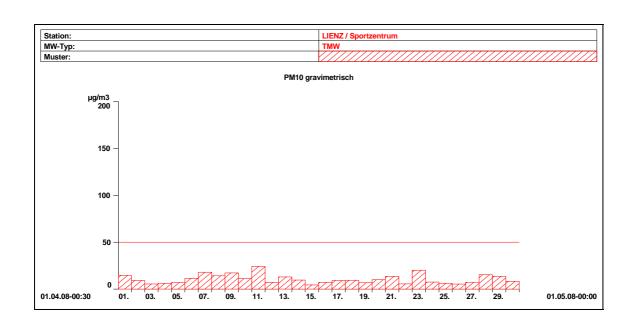

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

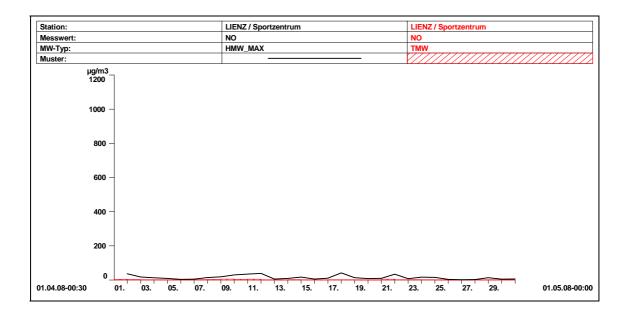
Messstelle: LIENZ / Sportzentrum

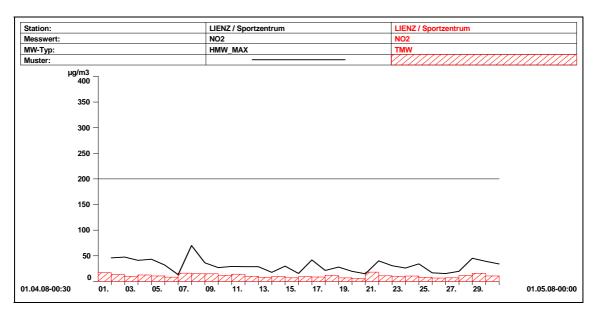
	SC)2	PM10	PM10	NO	_	NO2				03				CO	
			kont.	grav.		_			_							
	μg/		μg/m³	μg/m³	$\mu g/m^3$		μg/m³				μg/m³				mg/m³	I
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.				15	37	17	42	46	102	104	111	111	111			
02.				9	18	13	44	48	99	99	104	104	104			
03.				5	13	10	39	41	101	101	106	107	107			
04.				6	9	13	37	43	103	103	104	104	105			
05.				7	4	11	27	32	113	114	118	118	119			
So 06.				11	5	8	12	13	111	111	112	112	113			
07.				18	15	16	59	70	100	101	106	110	113			
08.				14	19	15	31	36	61	60	63	63	66			
09.				17	30	15	26	27	74	74	87	88	88			
10.				11	35	12	27	29	91	91	100	101	102			
11.				24	39	14	25	29	57	57	71	71	72			
12.				7	6	10	23	29	86	86	99	99	101			
So 13.				13	9	8	15	18	92	92	99	99	100			
14.				10	17	10	28	30	93	93	97	97	97			
15.				4	6	7	12	16	103	103	108	108	108			
16.				7	11	9	32	42	119	119	123	124	124			
17.				9	42	9	15	21	103	105	102	102	102			
18.				10	14	12	27	28	90	90	96	97	97			
19.				7	8	7	18	20	99	99	103	104	104			
So 20.				10	10	6	12	15	105	105	106	107	107			
21.				14	34	18 11	36 30	40 31	77 71	77 71	87 82	88 82	89 82			
22.				6	8 17	10	20	26	107	108	114	82 114	115			
23. 24.				20	16	10	28	34	118	118	123	124	124			
25.				8 6	4	8	15	17	113	113	123	124	124			
25. 26.				5	2	8 7	15	17	113	113	120	120	120			
So 27.				7	3	7	18	20	123	123	126	123	123			
28.				15	14	11	35	45	120	123	128	129	130			
29.				14	5	16	34	39	114	113	110	110	110			
30.				8	6	11	25	34	99	99	108	108	110			


	SO2	PM10	PM10	NO	NO2	03	СО
	$\mu g/m^3$	kont. μg/m³	grav. μg/m³	$\mu g/m^3$	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage			30	30	30	30	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				42	70	130	
Max.01-M					59	128	
Max.3-MW					50		
Max.08-M							
Max.8-MW						123	
Max.TMW			24	6	18	92	
97,5% Perz.							
MMW			11	2	11	68	
Gl.JMW					17		

Messstelle: LIENZ / Sportzentrum

Beurteilungsgrundlage		PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte menschliche Gesundheit		0		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					1	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)						
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	28	


(OAW = Osterreichische Akademie der Wissenschaften, VDI Richtume)						
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	28	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	17	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.



 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl. Nr. 199/1984 i.d.g.F.)

Grenzwerte für Schwefeldioxid (SO₂):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO ₂)					
	April - Oktober	November - März			
97,5 Perzentil für den Halbstundenmittelwert	0,07 mg/m³	0,15 mg/m³			
(HMW) in den Monaten					
Die zulässige Überschreitung des Grenzwertes	s, die sich aus der Perzentilregelung ergibt, da	urf höchstens 100% des Grenzwertes betragen.			
Tagesmittelwert (TMW)	0,05 mg/m ³	0,10 mg/m³			
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m³			

II. Warnwerte für Ozon laut Ozongesetz 1992: (BGBl. I Nr. 210/1992 i.d.g.F.)

Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)			
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)			
Zielwert	120 µg/m³ als Achtstundenmittelwert *)			
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.				

III. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien Stickstoffdioxid (NO ₂)			August 1989: Luftqualitätskriterien Ozon (O ₃)					
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO_2 in mg/m^3		Wirkungsbezogene Immissionsgrenzkonzentrationen für $\rm O_3$ in $\rm mg/m^3$						
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010					
*) als Mittelwert der Siebenstundenmittelwerte in der Zeit von 09.00 – 16.00 Uhr MEZ während der Vegetationsperiode								

Die höchstzulässige Konzentration von Schwefeldioxid (SO ₂) in der freien Luft beträgt					
	in Erholun	gsgebieten	in allgemeinen Siedlungsgebieten		
		Schwefeldioxid	l in mg/m³ Luft		
	April - Oktober	November – März			
Tagesmittelwert	0,05	0,10	0,20		
Halbstundenmittelwert	0,07	0,15	0,20		
			Die Überschreitung dieses Halbstundenmittelwertes		
			dreimal pro Tag bis höchstens 0,50 mg/m³ gilt		
			nicht als Luftbeeinträchtigung.		

V. Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/1997 i.d.g.F.)

a) Schutz der menschlichen Gesundheit

Grenzwerte in μg/m³ (ausgenommen CO: angegeben in mg/m³)							
Luftschadstoff	HMW	MW3	MW8	TMW	JMW		
Schwefeldioxid	200 *)			120			
Kohlenmonoxid			10				
Stickstoffdioxid	200				30 **)		
PM_{10}				50 ***)	40		
	War	nwerte in μg/m³					
Schwefeldioxid		500					
Stickstoffdioxid		400					
	Ziel	lwerte in μg/m³					
Stickstoffdioxid				80			
PM_{10}				50	20		

 ^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001 i.d.g.F.)

Grenzwerte in μg/m³						
Luftschadstoff	HMW	MW3	MW8	TMW	JMW	
Schwefeldioxid					201)	
Stickstoffoxide					30	
	Ziel	werte in μg/m³				
Schwefeldioxid				50		
Stickstoffdioxid				80		
¹) für das Kalenderjahr und Winterhalbjahr (1.Oktober bis 31.März)						

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

I. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)				
Tagesmittelwert	500 μg/m³			
Halbstundenmittelwert	$1000~\mu\mathrm{g/m^3}$			

^{**)} Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³ bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m³ verringert. Die Toleranzmarge von 10 μg/m³ gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 μg/m³ gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25.

IG-L Überschreitungen:

PM10 Staub

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 01.04.08-00:30 - 01.05.08-00:00 Tagesmittelwerte > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 01.04.08-00:30 - 01.05.08-00:00 Tagesmittelwerte > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.04.08-00:30 - 01.05.08-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Warnwertüberschreitungen im Zeitraum 01.04.08-00:30 - 01.05.08-00:00 Dreistundenmittelwert > 400µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.04.08-00:30 - 01.05.08-00:00 Tagesmittelwert > 80µg/m3

MESSSTELLE	Datum WERT[μg	/m3]
VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 Anzahl: 5	02.04.2008 03.04.2008 22.04.2008 25.04.2008 29.04.2008	101 106 92 84 84
KUNDL / A12 Anzahl: 1	03.04.2008	81

SCHWEFELDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.04.08-00:30 - 01.05.08-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Warnwertüberschreitungen im Zeitraum 01.04.08-00:30 - 01.05.08-00:00
Dreistundenmittelwert > 500µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.04.08-00:30 - 01.05.08-00:00

Tagesmittelwert > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.04.08-00:30 - 01.05.08-00:00 Tagesmittelwert > $120\mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.04.08-00:30 - 01.05.08-00:00
Achtstundenmittelwert > 10mg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

Überschreitungen der Alarmschwelle lt. Ozongesetz im Zeitraum 01.04.08-00:30 - 01.05.08-00:00

Einstundenmittelwert > 240µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der Informationsschwelle lt. Ozongesetz im Zeitraum 01.04.08-00:30 - 01.05.08-00:00

Einstundenmittelwert > $180\mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Zielwertüberschreitungen lt. Ozongesetz im Zeitraum 01.04.08-00:30 - 01.05.08-00:00

Achtstundenmittelwert > $120\mu g/m3$

MESSSTELLE	Datum	WERT[µg/	m3]
HÖFEN / Lärchbichl	30.04.2008	-24:00	121
Anzahl: 1	30.01.2000	21.00	121
KARWENDEL West	05.04.2008	-24:00	122
KARWENDEL West	06.04.2008	-24:00	121
KARWENDEL West	07.04.2008	-24:00	128
KARWENDEL West	08.04.2008	-24:00	133
KARWENDEL West	09.04.2008	-24:00	129
KARWENDEL West	17.04.2008		127
KARWENDEL West	18.04.2008		124
KARWENDEL West	19.04.2008		122
KARWENDEL West	20.04.2008		121
KARWENDEL West	25.04.2008		122
KARWENDEL West	26.04.2008		128
KARWENDEL West	27.04.2008		134
KARWENDEL West	28.04.2008		123
KARWENDEL West	30.04.2008	-24:00	125
Anzahl: 14			
MODDIVEREE	05 04 2000	24.00	100
NORDKETTE	05.04.2008		123
NORDKETTE	06.04.2008		122
NORDKETTE NORDKETTE	07.04.2008- 08.04.2008-		122 131
	09.04.2008		123
NORDKETTE NORDKETTE	17.04.2008		123
NORDKETTE	18.04.2008		122
NORDKETTE	26.04.2008		125
NORDKETTE	27.04.2008		134
NORDKETTE	28.04.2008		129
NORDKETTE	29.04.2008		129
NORDKETTE	30.04.2008		123
Anzahl: 12	30.01.2000	21.00	123
ZILLERTALER ALPEN	05.04.2008	-24:00	124
ZILLERTALER ALPEN	06.04.2008	-24:00	123
ZILLERTALER ALPEN	08.04.2008	-24:00	131
ZILLERTALER ALPEN	09.04.2008	-24:00	121
ZILLERTALER ALPEN	17.04.2008	-24:00	122
ZILLERTALER ALPEN	18.04.2008	-24:00	121
ZILLERTALER ALPEN	27.04.2008	-24:00	142
ZILLERTALER ALPEN	28.04.2008	-24:00	139
ZILLERTALER ALPEN	30.04.2008	-24:00	128
Anzahl: 9			
KRAMSACH / Angerberg	27.04.2008	-24:00	127
Anzahl: 1			
KUFSTEIN / Festung	27.04.2008	-24:00	123
Anzahl: 1			
I I I I I I I I I I I I I I I I I I I	07 04 0000	24.00	100
LIENZ / Sportzentrum	27.04.2008	-24:00	123
Anzahl: 1			